59 research outputs found

    Aintegumenta and Aintegumenta-Like6 regulate auxin-mediated flower development in Arabidopsis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two related genes encoding AP2/ERF-type transcription factors, <it>AINTEGUMENTA </it>(<it>ANT</it>) and <it>AINTEGUMENTA-LIKE6 </it>(<it>AIL6</it>), are important regulators of floral growth and patterning in Arabidopsis. Evidence suggests that these genes promote several aspects of flower development in response to auxin. To investigate the interplay of <it>ANT</it>, <it>AIL6 </it>and auxin during floral development, I have examined the phenotypic consequences of disrupting polar auxin transport in <it>ant</it>, <it>ail6 </it>and <it>ant ail6 </it>mutants by either genetic or chemical means.</p> <p>Results</p> <p>Plants containing mutations in <it>ANT </it>or <it>AIL6 </it>alone or in both genes together exhibit increased sensitivity to disruptions in polar auxin transport. Both genes promote shoot growth, floral meristem initiation and floral meristem patterning in combination with auxin transport. However, differences in the responses of <it>ant </it>and <it>ail6 </it>single mutants to perturbations in auxin transport suggest that these two genes also have non-overlapping activities in each of these developmental processes.</p> <p>Conclusions</p> <p>The enhanced sensitivity of <it>ant </it>and <it>ail6 </it>mutants to alterations in polar auxin transport suggests that these mutants have defects in some aspect of auxin physiology. The inability of <it>ant ail6 </it>double mutants to initiate flowers in backgrounds disrupted for auxin transport confirm the proposed roles for these two genes in floral meristem initiation.</p

    Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis

    Get PDF
    Arabidopsis APETALA2 (AP2) controls seed mass maternally, with ap2 mutants producing larger seeds than wild type. Here, we show that AP2 influences development of the three major seed compartments: embryo, endosperm, and seed coat. AP2 appears to have a significant effect on endosperm development. ap2 mutant seeds undergo an extended period of rapid endosperm growth early in development relative to wild type. This early expanded growth period in ap2 seeds is associated with delayed endosperm cellularization and overgrowth of the endosperm central vacuole. The subsequent period of moderate endosperm growth is also extended in ap2 seeds largely due to persistent cell divisions at the endosperm periphery. The effect of AP2 on endosperm development is mediated by different mechanisms than parent-of-origin effects on seed size observed in interploidy crosses. Seed coat development is affected; integument cells of ap2 mutants are more elongated than wild type. We conclude that endosperm overgrowth and/or integument cell elongation create a larger postfertilization embryo sac into which the ap2 embryo can grow. Morphological development of the embryo is initially delayed in ap2 compared with wild-type seeds, but ap2 embryos become larger than wild type after the bent-cotyledon stage of development. ap2 embryos are able to fill the enlarged postfertilization embryo sac, because they undergo extended periods of cell proliferation and seed filling. We discuss potential mechanisms by which maternally acting AP2 influences development of the zygotic embryo and endosperm to repress seed size

    Auxin Response Factor2 (ARF2) and Its Regulated Homeodomain Gene HB33 Mediate Abscisic Acid Response in Arabidopsis

    Get PDF
    The phytohormone abscisic acid (ABA) is an important regulator of plant development and response to environmental stresses. In this study, we identified two ABA overly sensitive mutant alleles in a gene encoding Auxin Response Factor2 (ARF2). The expression of ARF2 was induced by ABA treatment. The arf2 mutants showed enhanced ABA sensitivity in seed germination and primary root growth. In contrast, the primary root growth and seed germination of transgenic plants over-expressing ARF2 are less inhibited by ABA than that of the wild type. ARF2 negatively regulates the expression of a homeodomain gene HB33, the expression of which is reduced by ABA. Transgenic plants over-expressing HB33 are more sensitive, while transgenic plants reducing HB33 by RNAi are more resistant to ABA in the seed germination and primary root growth than the wild type. ABA treatment altered auxin distribution in the primary root tips and made the relative, but not absolute, auxin accumulation or auxin signal around quiescent centre cells and their surrounding columella stem cells to other cells stronger in arf2-101 than in the wild type. These results indicate that ARF2 and HB33 are novel regulators in the ABA signal pathway, which has crosstalk with auxin signal pathway in regulating plant growth

    Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Auxin signaling is vital for plant growth and development, and plays important role in apical dominance, tropic response, lateral root formation, vascular differentiation, embryo patterning and shoot elongation. Auxin Response Factors (ARFs) are the transcription factors that regulate the expression of auxin responsive genes. The <it>ARF </it>genes are represented by a large multigene family in plants. The first draft of full maize genome assembly has recently been released, however, to our knowledge, the <it>ARF </it>gene family from maize (<it>ZmARF </it>genes) has not been characterized in detail.</p> <p>Results</p> <p>In this study, 31 maize (<it>Zea mays </it>L.) genes that encode ARF proteins were identified in maize genome. It was shown that maize <it>ARF </it>genes fall into related sister pairs and chromosomal mapping revealed that duplication of <it>ZmARFs </it>was associated with the chromosomal block duplications. As expected, duplication of some <it>ZmARFs </it>showed a conserved intron/exon structure, whereas some others were more divergent, suggesting the possibility of functional diversification for these genes. Out of these 31 <it>ZmARF </it>genes, 14 possess auxin-responsive element in their promoter region, among which 7 appear to show small or negligible response to exogenous auxin. The 18 <it>ZmARF </it>genes were predicted to be the potential targets of small RNAs. Transgenic analysis revealed that increased miR167 level could cause degradation of transcripts of six potential targets (<it>ZmARF3</it>, <it>9</it>, <it>16</it>, <it>18</it>, <it>22 </it>and <it>30</it>). The expressions of maize <it>ARF </it>genes are responsive to exogenous auxin treatment. Dynamic expression patterns of <it>ZmARF </it>genes were observed in different stages of embryo development.</p> <p>Conclusions</p> <p>Maize <it>ARF </it>gene family is expanded (31 genes) as compared to <it>Arabidopsis </it>(23 genes) and rice (25 genes). The expression of these genes in maize is regulated by auxin and small RNAs. Dynamic expression patterns of <it>ZmARF </it>genes in embryo at different stages were detected which suggest that maize <it>ARF </it>genes may be involved in seed development and germination.</p

    The busbar system for Wendelstein 7-X prepared for assembly and operational loads

    No full text
    Forschungszentrum Julich has taken over the design, manufacturing and assembly of the superconducting busbar system for the stellarator Wendelstein 7-X. This includes the busbars itself, the support structure consisting of supports and clamps, and the joints for electrical and hydraulic connection of the busbars and coil terminals. Apart from providing the required electrical connection scheme, the busbar system has to be designed for relevant electrical and mechanical loads. Numerous interfaces and geometric boundary conditions define the confined space to accommodate the busbars and their support elements. This article describes how the individual challenges to engineering have been met in the course of the project. This includes design concepts and the method for iterative design of supports with respect to the individual load distribution caused by the supports itself. (C) 2008 Elsevier B.V. All rights reserved
    corecore