2,811 research outputs found

    Determinant solution for the Totally Asymmetric Exclusion Process with parallel update

    Get PDF
    We consider the totally asymmetric exclusion process in discrete time with the parallel update. Constructing an appropriate transformation of the evolution operator, we reduce the problem to that solvable by the Bethe ansatz. The non-stationary solution of the master equation for the infinite 1D lattice is obtained in a determinant form. Using a modified combinatorial treatment of the Bethe ansatz, we give an alternative derivation of the resulting determinant expression.Comment: 34 pages, 5 figures, final versio

    Exact solution of a one-parameter family of asymmetric exclusion processes

    Full text link
    We define a family of asymmetric processes for particles on a one-dimensional lattice, depending on a continuous parameter λ[0,1]\lambda \in [0,1] , interpolating between the completely asymmetric processes [1] (for λ=1\lambda =1) and the n=1 drop-push models [2] (for λ=0 \lambda =0). For arbitrary \la, the model describes an exclusion process, in which a particle pushes its right neighbouring particles to the right, with rates depending on the number of these particles. Using the Bethe ansatz, we obtain the exact solution of the master equation .Comment: 14 pages, LaTe

    Time-dependent correlation functions in a one-dimensional asymmetric exclusion process

    Full text link
    We study a one-dimensional anisotropic exclusion process describing particles injected at the origin, moving to the right on a chain of LL sites and being removed at the (right) boundary. We construct the steady state and compute the density profile, exact expressions for all equal-time n-point density correlation functions and the time-dependent two-point function in the steady state as functions of the injection and absorption rates. We determine the phase diagram of the model and compare our results with predictions from dynamical scaling and discuss some conjectures for other exclusion models.Comment: LATEX-file, 32 pages, Weizmann preprint WIS/93/01/Jan-P

    Inhomogeneous Coupling in Two-Channel Asymmetric Simple Exclusion Processes

    Full text link
    Asymmetric exclusion processes for particles moving on parallel channels with inhomogeneous coupling are investigated theoretically. Particles interact with hard-core exclusion and move in the same direction on both lattices, while transitions between the channels is allowed at one specific location in the bulk of the system. An approximate theoretical approach that describes the dynamics in the vertical link and horizontal lattice segments exactly but neglects the correlation between the horizontal and vertical transport is developed. It allows us to calculate stationary phase diagrams, particle currents and densities for symmetric and asymmetric transitions between the channels. It is shown that in the case of the symmetric coupling there are three stationary phases, similarly to the case of single-channel totally asymmetric exclusion processes with local inhomogeneity. However, the asymmetric coupling between the lattices lead to a very complex phase diagram with ten stationary-state regimes. Extensive Monte Carlo computer simulations generally support theoretical predictions, although simulated stationary-state properties slightly deviate from calculated in the mean-field approximation, suggesting the importance of correlations in the system. Dynamic properties and phase diagrams are discussed by analyzing constraints on the particle currents across the channels

    Monte Carlo simulations of bosonic reaction-diffusion systems

    Full text link
    An efficient Monte Carlo simulation method for bosonic reaction-diffusion systems which are mainly used in the renormalization group (RG) study is proposed. Using this method, one dimensional bosonic single species annihilation model is studied and, in turn, the results are compared with RG calculations. The numerical data are consistent with RG predictions. As a second application, a bosonic variant of the pair contact process with diffusion (PCPD) is simulated and shown to share the critical behavior with the PCPD. The invariance under the Galilean transformation of this boson model is also checked and discussion about the invariance in conjunction with other models are in order.Comment: Publishe

    Bethe Ansatz Solution of the Asymmetric Exclusion Process with Open Boundaries

    Full text link
    We derive the Bethe ansatz equations describing the complete spectrum of the transition matrix of the partially asymmetric exclusion process with the most general open boundary conditions. For totally asymmetric diffusion we calculate the spectral gap, which characterizes the approach to stationarity at large times. We observe boundary induced crossovers in and between massive, diffusive and KPZ scaling regimes.Comment: 4 pages, 2 figures, published versio

    Dynamics of an exclusion process with creation and annihilation

    Full text link
    We examine the dynamical properties of an exclusion process with creation and annihilation of particles in the framework of a phenomenological domain-wall theory, by scaling arguments and by numerical simulation. We find that the length- and time scale are finite in the maximum current phase for finite creation- and annihilation rates as opposed to the algebraically decaying correlations of the totally asymmetric simple exclusion process (TASEP). Critical exponents of the transition to the TASEP are determined. The case where bulk creation- and annihilation rates vanish faster than the inverse of the system size N is also analyzed. We point out that shock localization is possible even for rates proportional to 1/N^a, 1<a<2.Comment: 16 pages, 8 figures, typos corrected, references added, section 4 revise

    Exclusion process for particles of arbitrary extension: Hydrodynamic limit and algebraic properties

    Full text link
    The behaviour of extended particles with exclusion interaction on a one-dimensional lattice is investigated. The basic model is called \ell-ASEP as a generalization of the asymmetric exclusion process (ASEP) to particles of arbitrary length \ell. Stationary and dynamical properties of the \ell-ASEP with periodic boundary conditions are derived in the hydrodynamic limit from microscopic properties of the underlying stochastic many-body system. In particular, the hydrodynamic equation for the local density evolution and the time-dependent diffusion constant of a tracer particle are calculated. As a fundamental algebraic property of the symmetric exclusion process (SEP) the SU(2)-symmetry is generalized to the case of extended particles

    On the Glauber model in a quantum representation

    Full text link
    The Glauber model is reconsidered based on a quantum formulation of the Master equation. Unlike the conventional approach the temperature and the Ising energy are included from the beginning by introducing a Heisenberg-like picture of the second quantized operators. This method enables us to get an exact expression for the transition rate of a single flip-process wi(σi)w_i(\sigma_i) which is in accordance with the principle of detailed balance. The transition rate differs significantly from the conventional one due to Glauber in the low temperature regime. Here the behavior is controlled by the Ising energy and not by the microscopic time scale.Comment: 8 page
    corecore