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Abstract

This paper addresses the problem of minimizing the expected cost of locating a

number of single product facilities and allocating uncertain customer demand to

these facilities. The total costs consist of two components: firstly linear transporta-

tion cost of satisfying customer demand and secondly the costs of investing in a

facility as well as maintaining and operating it. These facility costs are general and

non-linear in shape and could express both changing economies of scale and disec-

onomies of scale. We formulate the problem as a two-stage stochastic programming

model where both demand and short-run costs may be uncertain at the invest-

ment time. We use a solution method based on Lagrangean relaxation, and show

computational results for a slaughterhouse location case from the Norwegian meat

industry.
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1 Introduction

Mathematical programming approaches to model and solve facility location

models have been extensively studied since the 1950’s [4, 7]. In this paper we

deal with two issues that have been analyzed separately to some degree, but

rarely in combination: non-linear facility costs and stochasticity in costs and

demand. From a model perspective our work is a generalization of an early

paper by Balachandran and Jain [2]. Our approach to solve the problem is

completely different from the former. We demonstrate both the model and the

solution method in a real life application. We also emphasize the importance

of understanding both the long-run cost function for facilities which often

are subject to economies of scale that change over the production interval

and the short-run cost functions which often are convex as a consequence of

diminishing marginal return on production input factors.

Before we move on to a description of the structure of the paper, we will give a

short overview of relevant literature. Traditionally, the facility costs are treated

as fixed set-up costs and linear variable costs [see e. g. 21, 15, 23]. This is a

situation where marginal costs are constant and the economies of scale come

from sharing the fixed part on more units. In real-world applications however,

both the fixed part of facility costs and the marginal costs often depend on

the size of the facility [13, 28, 20]. Usually the degree to which economies of

∗ Corresponding author. Phone: +47 73591267, Fax: +47 73593603.
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scale are experienced changes with volume and even diseconomies of scale are

common [see e. g. 3, 26, for a definition].

Several models and algorithms have been developed that can be used to for-

mulate and solve facility location problems subject to changing economies of

scale in a deterministic setting: Soland [33] develops an algorithm for a facility

location problem with facility costs that are concave in the amount produced

and transportation costs that are concave in the amount shipped. Domschke

and Voß [11] formulate a multi-product facility location model with concave

production costs.

Changing economies of scale and diseconomies of scale have also been rep-

resented by means of a deterministic facility location problem with staircase

costs (FLSC), see for example Holmberg [16], Holmberg [17], Holmberg and

Ling [18] or Harkness and ReVelle [14]. The modular capacitated plant loca-

tion model (MCPL) can be interpreted as a generalization of the FLSC, see

e. g. Correia and Captivo [9] or Correia and Captivo [10]. Van den Broek,

Schütz, Stougie, and Tomasgard [34] present an application from the Norwe-

gian meat industry. They use a piecewise linearization of a general non-linear

facility cost curve, but employ a solution strategy similar to the framework

given by the aforementioned papers.

The aforementioned paper by Balachandran and Jain [2] was an early ap-

proach with a general piecewise linear objective preceding the ones in the

previous paragraph. This paper also is one of the first that allows for demand

uncertainty in the model. Uncertainty has later been incorporated in a num-

ber of facility location models. Good overviews over the literature on facility

location under uncertainty can be found in the reviews by Louveaux [23] and
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Snyder [32]. Louveaux [23] provides a modelling oriented review over location

models belonging to the field of stochastic programming, whereas Snyder [32]

is more interested in the application of various models for optimization under

uncertainty to facility location. Some examples are listed here: Louveaux and

Peeters [24] present a two-stage stochastic programming problem with uncer-

tainty in demand, selling prices, as well as in production and transportation

cost. Location decisions belong to the first stage while demand is allocated in

the second stage. Laporte, Louveaux, and van Hamme [22] include also estab-

lishment of transportation channels between a facility and customers in the

first-stage decisions. Another class of interesting models focusses on capacity

expansion. Eppen, Martin, and Schrage [12] present a two-stage formulation.

A formulation for a multi-stage capacity expansion problem under uncertain

demand is presented by Ahmed, King, and Parija [1]. They propose a formu-

lation that allows for exploiting the lot-sizing substructure of their problem.

Balachandran and Jain [2] is the only paper that combines modelling of un-

certainty with a general objective allowing for changing economies of scale

and diseconomies of scale. The model is for single product facilities. They use

a piecewise linear, potentially discontinuous, objective for the facility costs.

Transportation costs are linear. In the first stage a capacity is chosen for each

facility. In the second stage demand is allocated to facilities and deviations

from the capacities of facilities are penalized with costs for over-capacity and

under-capacity. The solution methodology based on branch-and-bound is gen-

eral as the objective function is bounded from below by the best linear function

and the resulting node problem is a stochastic transportation problem. The

branching is done on capacity intervals where the piecewise linear objective

has breakpoints. This is similar to how an approach using special ordered sets
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[35] in nowadays commercial solvers would work.

We extend this approach in several ways. Firstly, we model the first stage

decision as a design capacity interval rather than a fixed point. Inside this

interval the variable short-term cost is linear. Secondly, we give a more thor-

ough description and motivation of the short-run cost functions of facilities

leading to a general piecewise linear convex second-stage cost function rather

than two penalty costs around the design capacity. Hence our approach can

be seen as a hybrid between the capacitated and uncapacitated problem, as a

capacity interval is decided in the first stage, but volumes outside this interval

may be produced subject to a short-term cost function in the second stage.

Thirdly, we allow for stochastic costs as well as stochastic demand. Finally,

the solution method we choose allows for solving problems of sizes met in real

life cases. In our experience, a formulation based on special ordered sets and

branch-and-bound is not computationally tractable for large problems with

many linepieces in the approximations. For example, the deterministic version

of our real life problem still has an optimality gap of 66% after 7 hours running

time using a commercial solver and special ordered sets.

For solving this problem, we approximate the facility cost functions by piece-

wise linear functions, upon which we decompose the problem using Lagrangean

relaxation. Relaxing the demand constraints makes the problem separable in

the facilities and we apply an efficient algorithm based on a solution method

for the continuous knapsack problem to solve the subproblems. The technique

of Lagrangean relaxation in combination with a heuristic to generate feasible

solutions for the original problem from the Lagrangean relaxation solutions

has been successfully applied already in the past for deterministic facility lo-

cation problems. Examples for this can be found in Cornuejols, Fisher, and
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Nemhauser [8], Nemhauser and Wolsey [27], Shetty [31], Beasley [5], or Holm-

berg, Rönnqvist, and Yuan [19]. Lagrangean relaxation has also been used for

solving the FLSP and the MCPL, see e. g. Holmberg and Ling [18], Hark-

ness and ReVelle [14], Correia and Captivo [9], Correia and Captivo [10], and

Van den Broek et al. [34]. The approach we have chosen to solve the problem

brings us within the framework of the FLSC and MCPL, even if all these

papers deal with the deterministic case. Our algorithm is a modification of

the one used by Van den Broek et al. [34] on the deterministic version of

the problem and makes the problem separable in scenarios by imposing non-

anticipativity constraints on the first-stage decision variables.

In Section 2 we provide the stochastic programming formulation for a facility

location problem with a non-linear, non convex, non-concave objective func-

tion, uncertain short-run costs and uncertain demand. Our solution method

is presented in Section 3. A full-size real life case from the Norwegian meat

industry is described in Section 4 [see also 34]. Computational results for this

problem from practice are shown in Section 5. Conclusions in Section 6 finish

the paper.

2 The Mathematical Programming Model

In this section we provide a two-stage stochastic programming formulation for

a facility location problem with non-convex non-concave facility costs, linear

transportation costs and uncertain demand. The motivation for the shape of

the objective is the need to model more realistic situations for economies of

scale than what is found in the literature, with very few exceptions that we are

aware of. The first-stage decision is to determine the location of facilities and
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the capacity to be installed at this location. After observing the demand, we

decide in the second stage the allocation of customer demand to the facilities

opened in the first stage.

2.1 Modelling short-run costs and long-run costs

The cost functions that are underlying the first-stage and second-stage deci-

sions are the long-run and the short-run cost function, respectively (see e. g.

Mathis and Koscianski [26] or Perloff [29]). In the long-run, all input factors

are variable, i. e. one will always choose the combination of input factors that

produces the desired output at minimal cost. To illustrate this, consider a

product with two input factors, for example capital and labour. The three

isoquants in Figure 1 are the technologically efficient combinations of the

two input factors to produce the quantities Q1, Q2, and Q3 respectively. The

economically efficient combinations of capital and labour to produce these

quantities are given by the points P1, P2, and P3, where the isocost curves

C1, C2, and C3 are tangents to the corresponding isoquants (assuming linear

costs for the components). These minimal cost combinations constitute the

long-run expansion path. Thus, in order to produce Q2 in the long-run, one

would choose the combination of capital and labour as given by P2.

In the short-run, it is no longer possible to vary all input factors. Consider

capital (e. g. the number of machines) as the fixed input in the example

above. The decision-maker has implemented the combination of capital and

labour as given by P2. Demand however, is varying and the quantity produced

deviates from Q2 in order to meet demand. The output can only be increased

or decreased by adjusting the factor labour, creating the short-run expansion
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path in Figure 1. One can see from this figure that the costs for producing

quantities Q1 and Q3 on the short-run expansion path are higher than the

costs for the same quantities on the long-run expansion path.

Both the long-run expansion path and the short-run expansion path translate

into total cost functions. The typical S-shape of long-run total cost curves

results from a long-run marginal cost function that is decreasing and then

increasing in the production interval. The resulting long-run total cost curve

then exhibits economies of scale as the average cost function is decreasing. The

long-run marginal costs and the long-run average costs are shown in Figure

2. This type of marginal cost function can for example be found in the meat

producing industry [20].

In the natural monopoly case the marginal cost approaches the average cost

from below without crossing it, as in Figure 2. Usually diseconomies of scale

will eventually lead to a situation where average costs start rising. Both the

solution method and the model presented here allow for a general, non-convex,

non-concave, shape of the objective.

To each installed capacity a short-run cost function is assigned, which is tan-

gent to the long-run cost function at that capacity. The short-run total costs

represent the costs of operating a facility given the installed capacity. These

cost functions are convex under the assumptions that the marginal returns of

the variable input factors are diminishing. The relationship between long-run

total costs and short-run costs is depicted in Figure 3.

The first-stage decision is to decide upon the capacities of the facilities. This

decision is based on the long-run total cost function and thereby implicitly

decides the second-stage short-run cost function.
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After the facilities are opened, production is assigned to the open facilities in

order to satisfy demand in the second-stage. The second-stage cost function is

the short-run total cost function, i. e. a deviation of the production level from

the installed capacity is more costly than the long-run total costs.

2.2 Linearized Model Formulation

The objective function consists of linear transportation costs and non-convex,

non-concave facility costs. We approximate both the first-stage facility cost

function and the second-stage facility cost function by a piecewise linear func-

tion, creating a piecewise linear, non-convex, non-concave objective function.

The first-stage decision is to determine the designed capacity interval for the

facilities. The designed capacity is described by the lower and upper capacity

limit of the chosen linepiece k on the first-stage facility cost function.

We model the non-convex, non-concave first-stage cost function using the ap-

proach of a special ordered set of type 1 [see e. g. 35], i. e. using an ordered

set of binary variables, one for each linepiece of the cost function, that have to

add up to one. In a feasible solution, exactly one of the variables will be equal

to one, corresponding to the chosen linepiece and defining the design capacity

of the facility.

Once customer demand is known, the second-stage decision is to allocate de-

mand to the opened facilities. Depending on the realization of demand, the

production level is adjusted according to the short-run expansion path, vary-

ing the variable input factors. It is possible to either exceed the upper capacity

limit installed in the first stage up to a certain limit, e. g. by using overtime
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hours, or to allocate less demand to a facility than its installed capacity. The

total facility costs however, always exceed the costs that would have occurred

if the right linepiece for the production level had been chosen in the fist stage.

We approximate the convex second-stage short-run cost function by a piece-

wise linear function. Due to the convexity of the short-run cost function we

do not need to use special ordered sets of type 2 to do this [35].

Let n be the number of demand points in the problem. We assume that each

of these points is also a potential facility location.

By K we denote the number of linepieces used to approximate the non-linear

first-stage facility cost function, resulting in K + 1 breakpoints. P1, . . . , PK+1

are the per unit cost, and F1, . . . , FK+1 the volumes at these breakpoints. We

define P0 = 0 and F0 = 0, such that the choice of this linepiece for a location

means that no facility is opened in that location. In order to properly represent

the fixed costs of opening a facility, F2 is chosen small. Thus, P2 becomes high

as the fixed costs of the facility are distributed only over these few units.

The first-stage decision variables are represented by the n(K +1)-dimensional

vector y that is made up by all yik, i = 1, . . . , n, k = 0, . . . , K. If yik = 1, k 6= 0,

the linepiece between Fk and Fk+1 is chosen for location i.

The second-stage cost function is approximated by a piecewise linear function,

depending on the choice of linepiece k in the first stage. The linearized first-

stage and second-stage facility cost functions are illustrated in Figure 4. In

the following we assume that all facilities have the same cost function. This is

not a necessary assumption for the modelling and decomposition approach we

have chosen but we have not tested the quality of the heuristic used to find

upper bounds in cases where they are different.
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The second-stage cost function consists of B linesegments, thus having B +

1 breakpoints. We denote the breakpoints of this function by Qkb, ∀k, b =

1, . . . , B + 1. We define Qkβ = Fk and Qk(β+1) = Fk+1 such that the linepiece

between breakpoints β and β + 1 of the second-stage cost function is equal

to the linepiece chosen in the first-stage. The slope of every linepiece is given

by ukb, representing the per unit production costs. The total costs at each

breakpoint are given by Ckb, ∀k, b = 1, . . . , B + 1. With Qkβ and Qk(β+1),

we get Ckβ = PkFk, and Ck(β+1) = Pk+1Fk+1. We introduce the second stage

decision variables µjkb, ∀k, b = 1, . . . , B +1, denoting the weight of breakpoint

b given linepiece k at location j. For each j and each k, they should add up

to 1, only two of them can be non-zero and the non-zero weights must be

adjacent. This will be automatically satisified as the short-run cost curve is

convex.

2.3 A Two-stage Recourse Formulation

The uncertainty in short-run facility costs and customer demand is modeled

by probability distributions discretized in a set of scenarios S (we abusively

use S also for the number of scenarios). Superscript s indicates the scenario

and ps denotes the probability of scenario s. Ds
i is the demand realization

at a given location i and Cs the realization of short-run costs for the given

scenario s. Tij is the per unit transportation cost from location i to location

j. We define the parameters Lij = 1 if demand at location i can be served at

location j and Lij = 0 otherwise.

The continuous decision variables xs
ij denote the amount of demand at i served
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at j in scenario s. This leads to the stochastic programming formulation

min
S

∑

s=1

psQs(y) (1)

subject to

K
∑

k=0

yjk = 1, ∀j, (2)

yjk ∈ {0, 1}, ∀j, k. (3)

where the second stage problem is given as

Qs(y) =
n

∑

i=1

n
∑

j=1

Tijx
s
ij +

n
∑

j=1

K
∑

k=1

B+1
∑

b=1

Cs
kbµ

s
jkb (4)

subject to

n
∑

j=1

xs
ij = Ds

i , ∀i, s, (5)

n
∑

i=1

xs
ij =

K
∑

k=1

B+1
∑

b=1

Qkbµ
s
jkb, ∀j, s, (6)

xs
ij ≤ LijD

s
i , ∀i, j, s, (7)

B+1
∑

b=1

µs
jkb = yjk, ∀j, k, s, (8)

xs
ij ≥ 0, ∀i, j, s, (9)

µs
jkb ≥ 0, ∀j, k, b, s. (10)

Restrictions (2) ensure that only one linepiece is chosen for each location.

The objective function of the second stage problem (4) is given as the sum

of transportation and production costs. Constraints (5) force all demand at

location i to be assigned. Constraints (7) only allow assignment of demand

to locations where the demand can be satisfied. Constraints (6) ensure that

demand is allocated to open facilities only. Restrictions (8) link the correct
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second-stage cost function to the first-stage decision. (9)-(10) are the non-

negativity constraints.

For each scenario we create a copy of the first-stage decision variables and

add non-anticipativity constraints (13) [30]. This way, the first-stage problem

(1)-(3) translates into

min
S

∑

s=1

psQs(y) (11)

subject to

K
∑

k=0

ys
jk = 1, ∀j, s, (12)

y1
jk = y2

jk = · · · = yS−1
jk = yS

jk, ∀j, k, (13)

ys
jk ∈ {0, 1}, ∀j, k, s. (14)

In addition we change restriction (8) to

B+1
∑

b=1

µs
jkb = ys

jk, ∀j, k, s. (15)

3 Lagrangean Relaxation

We define a Lagrangean relaxation by relaxing the demand constraints (5) in

the problem formulaton above using λ =
(

λ1
1, . . . , λ

S
1 , . . . , λ1

n, . . . , λ
S
n

)

as the

vector of Langragean multipliers:

LR(λ) = min
S

∑

s=1

ps





n
∑

i=1

n
∑

j=1

(Tij − λs
i ) xs

ij+

n
∑

j=1

K
∑

k=1

B+1
∑

b=1

Cs
kbµ

s
jkb +

n
∑

i=1

λs
iD

s
i





subject to (6)-(7), (9)-(10), and (12)-(15).

For a given λ,
∑S

s=1

∑n
i=1 psλs

iD
s
i is constant. The problem is therefore sepa-
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rable in j. We write LR(λ) =
∑n

j=1 gj(λ)+
∑S

s=1

∑n
i=1 psλs

iD
s
i with gj(λ) being

the optimal value of the Lagrangean subproblem for each location j:

gj(λ) = min
S

∑

s=1

ps

[

n
∑

i=1

(Tij − λs
i ) xs

ij +
K

∑

k=1

B+1
∑

b=1

Cs
kbµ

s
jkb

]

(16)

subject to

K
∑

k=0

ys
jk = 1, ∀s, (17)

y1
jk = y2

jk = · · · = yS−1
jk = yS

jk, ∀k, (18)

n
∑

i=1

xs
ij =

K
∑

k=1

B+1
∑

b=1

Qkbµ
s
jkb, ∀s, (19)

xs
ij ≤ LijD

s
i , ∀i, s, (20)

B+1
∑

b=1

µs
jkb = ys

jk, ∀k, s, (21)

ys
jk ∈ {0, 1}, ∀k, s, (22)

xs
ij ≥ 0, ∀i, s, (23)

µs
jkb ≥ 0, ∀k, b, s. (24)

3.1 Solving the Subproblem

The first-stage decision is to choose the designed capacity of the facility to

open at location j, which corresponds to choosing a linepiece k of the piecewise

linear long-run facility cost function. Once the linepiece k is chosen, the second-

stage facility cost function is convex piecewise linear with B linepieces, having

strictly increasing slopes ukb, where ukβ = Pk+1Fk+1−PkFk

Fk+1−Fk

is the slope of the

linepiece chosen in the first stage. Choosing a linepiece k for a given location

j also takes care of the non-anticipativity constraints (18) as the choice of the

linepiece is valid for all scenarios. If we thus consider the problem (16)-(24) for

each linepiece k = 1, . . . , K separately, gj(λ) becomes separable in scenarios.
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The case k = 0 does not have to be calculated, as no facility will be opened

and no costs occur. The subproblem gjks(λ) for a given location j, linepiece k

and scenario s is:

gjks(λ) = min
n

∑

i=1

(Tij − λs
i ) xs

ij +
B+1
∑

b=1

Cs
kbµ

s
jkb (25)

subject to

n
∑

i=1

xs
ij =

B+1
∑

b=1

Qkbµ
s
jkb, (26)

xs
ij ≤ LijD

s
i , ∀i, (27)

B+1
∑

b=1

µs
jkb = 1, (28)

xs
ij ≥ 0, ∀i, (29)

µs
jkb ≥ 0, ∀b. (30)

Problem (25)-(30) is of the same type as the Lagrangean subproblem for a

given facility solved in Van den Broek et al. [34] for deterministic facility

location problems with a general objective. Their subproblem is a continu-

ous knapsack problem with lower and upper capacity bounds and a linear

objective, while our continuous knapsack problem has a piecewise linear con-

vex objective in (25). Still we can adapt the method described by Martello

and Toth [25] for solving continuous knapsack problems with linear objective

function to the algorithm to find gjks(λ) described in Figure 5.

The customer locations i are first sorted according to increasing Tij − λs
i +

us
k1. In this order the customers are allocated to the facility at location j

in Step 1, until either all customers are allocated (a), or if the unit costs of

the subproblem Tij − λs
i + us

kb become positive, i.e. it is no longer profitable

to serve customers from j (b), or if the upper breakpoint of the linepiece is
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reached (c). In Step 2 we calculate the objective function of the knapsack

problem. The first element of the sum is the value of the previous linepiece,

the next element is the value of all customers locations we decided to serve

on the current linepiece. The third element corrects the objective function

value in case the demand of the last customer on the previous linepiece spans

across the two linepieces. In Step 3, we update the costs of serving additional

customers for the new linepiece and move to next linepiece (Step 4). The

algorithm continues until the solution is optimal or all linepieces have been

considered, i.e. the overall capacity limit of the facility has been reached.

After calculating gjks(λ), addition gives gjk(λ) =
∑S

s=1 psgjks(λ), and subprob-

lem (16)-(24) is solved by gj(λ) = mink gjk(λ). The computational complexity

of this procedure is O(n · K · S).

3.2 The Lagrangean Dual

In order to find the best lower bound on the optimal solution value of the

original problem, one has to solve the Lagrangean dual problem (LD):

LD = max
λ

LR(λ).

We solve LD by a sub-gradient optimization method, which is commonly used

for facility location problems. The procedure is for example described in Holm-

berg et al. [19], but we repeat it here for the sake of completeness. The partial

derivative of LR is given by

δs
i =

∂LR(λ)

∂λs
i

= Ds
i −

n
∑

j=1

xs
ij(λ),
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with xs
ij(λ) being the optimal solution of the Lagrangean relaxation given λ.

Hence, the gradient of LR is given by ∇LR(λ) = (δ1
1, . . . , δ

S
n ).

Initialize: Choose values for ε1 > 0, ε2 > 0, V , V1 and η0.

Set UB equal to the value of some approximate solution. Set LB = −∞.

Set v = 1, v1 = 1, choose starting point λ(1), and set η = η0.

Repeat: Until v = V ,

(1) Determine LR(λ(v)).

If LR(λ(v)) > LB, set LB = LR(λ(v)) and v1 = 0;

else, set v1 = v1 + 1. If v1 = V1 set η = η

2
and set v1 = 0.

(2) Derive a feasible solution from yjk(λ
(v)) and xs

ij(λ
(v)), yielding value G(v).

If G(v) ≤ UB, set UB = G(v) and set η = η0. If UB − LB < 1, stop: UB

is the optimal solution value.

(3) Calculate the gradient s(v) = ∇LR(λ(v)), determine the step length t(v) =

ηUB−LR(λ(v))

||s(v)||2
, and set λ(v+1) = λ(v) + t(v)s(v).

(4) If ||s(v)|| ≤ ε1 or ||λ(v+1) − λ(v)|| ≤ ε2, stop;

else, set v = v + 1.

Output: LB is the approximate solution of the Lagrangean dual.

Given λ, LR(λ) yields a lower bound on the optimal solution value, but the

optimal solution of the Lagrangean relaxation is in general not a feasible so-

lution to the original problem. Step 2 of the algorithm described above uses a

heuristic to find an upper bound G(v) by constructing a feasible solution for

the original problem based on the solution of the Lagrangean relaxation in

iteration v. The heuristic is presented in the next section.
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3.3 Calculating an Upper Bound

The heuristic for finding a feasible solution, starts from the optimal solution

of the Lagrangean relaxation, by installation of facilities at locations j, which

have yjk(λ) = 1 for k ≥ 1, and allocation of demand for each scenario, given

by xs
ij(λ). If not all demand is satisfied and there is no more capacity available

subject to the short-run capacity limit QkB+1 for any facility with first-stage

design capacity between Fk and Fk+1 (see Figure 4), the heuristic first tries

to expand capacity of open facilities. If also this does not create enough total

capacity then eventually the heuristic resorts to opening new facilities. The

rules used for expanding and opening facilities are described in detail below.

We introduce additional notation: MCj for the maximum capacity available

at location j and UCs
j for the capacity used at location j in scenario s. In the

following we use y,MC, xs and UCs to denote the vectors of all yj,MCj, x
s
ij

and UCs
j , respectively, and x and UC to denote the vectors of all xs and UCs.

Initialize:

Set xs
ij = 0, yjk = yjk(λ), MCj =

∑

k yjkQk(B+1), and UCs
j = 0, ∀i, j, k, s.

(1) Define Is
1 =

{

i | xs
ij(λ) > 0, ∀j

}

, ∀s.

For each scenario s: if Is
1 6= ∅ do AssignToExisting(Is

1 , x
s,MC,UCs).

(2) Define Is
2 =

{

i |
∑

j xs
ij < Ds

i

}

, ∀s and I2 =
⋃

s I
s
2 .

(3) While I2 6= ∅ do:

(a) For each scenario s, if Is
2 6= ∅, do AssignToExisting(Is

2 , x
s,MC,UCs).

(b) Define Is
2 =

{

i |
∑

j xs
ij < Ds

i

}

, ∀s and I2 =
⋃

s I
s
2 .
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If I2 6= ∅:

(i) Define J1 =
{

j |
∑K−1

k=1 yjk = 1, UCs
j = MCj

}

.

(ii) Do ExpandExisting(I2,J1, x,MC,UC).

end If.

(c) Define Is
2 =

{

i |
∑

j xs
ij < Ds

i

}

, ∀s and I2 =
⋃

s I
s
2 .

(d) If I2 6= ∅: set J2 = {j | yjk = 1, k = 0}

(i) Do OpenNew(I2,J2, y, xs,MC,UCs).

(ii) Define Is
2 =

{

i |
∑

j xs
ij < Ds

i

}

, ∀s and I2 =
⋃

s I
s
2 .

end If.

end While.

Output: UB is the cost of a feasible solution to problem (11)-(10).

The subroutine AssignToExisting takes a set of customer locations I and

tries to assign the demand of these customers to existing facilities. For each

customer i ∈ I, the subroutine first determines the facility j that can satisfy

demand at location i at lowest cost Tij. It then assigns as much customer

demand as possible to facility j. A detailed description of AssignToExisting

is given in Figure 6.

If the existing facilities cannot satisfy all customer demand, we try to resolve

these infeasibilities by expanding the capacity of the existing facilities. The

subroutine ExpandExisting takes as input parameters the set I of customers

with unsatisfied demand and the set J of facilities that have no more capacity

available.

It then determines the facility j ∈ J that can serve most of the customers in

I, expands this facility, and assigns as much customer demand as possible to

it. This subroutine is shown in Figure 7.
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If the solution is still infeasible, we open new facilities. The subroutine OpenNew,

described in detail in Figure 8, has as input the set I of customer locations

with unsatisfied demand and the set J of locations without facility. It deter-

mines the location j ∈ J that can satisfy most customer demand and assigns

this demand to location j. The subroutine then installs a maximum capac-

ity at this facility such that the expected capacity usage is smaller than the

installed capacity. If the newly opened facility is not enough, step 3 of the

heuristic is redone with the new facility included.

The heuristic returns a feasible solution, yjk and xs
jk, with a solution value

denoted by G(v) at iteration v of the sub-gradient optimization routine de-

scribed in Section 3.2. When the locations are fixed the resulting problem is

a linear stochastic transportation problem. To improve the solution we use

XpressMP to solve the stochastic transportation problem every 100 iterations

or in iterations when a new best solution is found by the heuristic. It can be

mentioned that the version of the algorithm where we do not try to improve

the heuristic solution using XpressMP, only gives marginally worse results in

empirical computational studies.

4 Case Description

In this section we present a case from the Norwegian meat industry regard-

ing the location of slaughterhouses for cattle. Computational results for this

case are presented in the next section. The facility costs used here are based

on a German study [20]. These costs include both fixed costs (capital cost,

personal, insurance) and variable costs (energy, workforce, water, cleaning, re-

pairs, classification, material, waste management). The total cost function is
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depicted as the solid line in Figure 9. As the average costs are monotonically

decreasing, the total cost curve we use is concave for low volumes and convex

for higher volumes. Marginal costs are always below average costs.

There are 435 possible locations for facilities, corresponding to municipalities

in Norway. The facility cost functions are equal for all facilities and represents

the first-stage cost. The piecewise linear function used to approximate the

total cost function is the dashed line in Figure 9.

The transportation data is taken from Van den Broek et al. [34]. The two im-

portant elements here are transportation time and transportation cost. Con-

cerning the first, due to legal restrictions, animals cannot be transported for

more than 8 hours. This clearly limits the possible transportation distance.

The transportation time is defined as the total duration from loading the first

animal on the truck, until the last animal has left the truck at the slaugh-

terhouse. This time is approximated by the time to drive from the collection

region to the slaughterhouse (travel time) plus the average time of filling up

the truck on a collection round-trip (collecting time). Allocation of animal mu-

nicipalities to slaughterhouse municipalities which do not satisfy the 8 hour

rule is eliminated using the binary parameter Lij which is set to 0 for infeasible

combinations.

Transportation costs consist of two components. Firstly, there is the driving

cost from the slaughterhouse to the region (municipalities) where animals are

to be picked up and back to the slaughterhouse (travelling cost). Secondly,

there is the cost of collecting animals in the region (collecting cost). For ap-

proximating these costs Borgen, Schea, Rømo, and Tomasgard [6] estimated,

based on empirical data from the Norwegian meat cooperative, the average
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distance driven, the average number of stops at farms, and the average time

per stop.

The data from the Norwegian meat cooperative contains no indication of dif-

ferences between the different regions regarding the velocity of the cars or the

costs. Thus, Van den Broek et al. [34] assume equal velocity and equal costs in

all regions. As the transportation operator is paid by the travelling distance,

and has an additional payment linear in the number of animals on the truck,

the transportation costs are linear in the distance to the slaughterhouse and

linear in the number of animals transported in the truck.

We approximate the first-stage facility cost function by 6 linepieces. The break-

points are given in (tons/year,NOK/kilo) and chosen as: (0, 0), (1.3, 6153.85),

(1000, 8.03), (5000, 3.43), (9000, 2.18), (17500, 1.34), and (40000, 1.1). In this

case the short-run cost functions are assumed to be deterministic. The second-

stage facility cost function is represented by a convex piecewise linear function

with 3 linepieces. The second linepiece corresponds to the linepiece chosen in

the first stage (yjk = 1) and has a per unit cost of uk2 = Pk+1Fk+1−PkFk

Fk+1−Fk

, see

Figure 4. The per unit cost of the first linepiece is given as uk1 = 0.75 ·

min
{

uk1, u(k−1)1

}

and on the last linepiece it is defined as uk3 = uk2 + u(k+1)2

for k < 6 and uk3 = 5 · uk2 for k = 6. In addition the upper limit on the

capacity usage is set to Qk3 = 1.2 · Fk+1.

We aggregate demand in the same 435 municipalities that are candidates for

locations. Demand is here described as a farmer’s demand to deliver animals to

a slaughterhouse. The demand is aggregated into demand per municipality and

year. We generated 3 groups of demand data sets drawing from a multivariate

normal distribution with expectation equal to the original animal population
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of year 1999. The first group of data sets assumes that demand is varying on

a national level, i. e. the demand in all municipalities is perfectly correlated.

The second group considers regional demand variations. The municipalities

are grouped into 4 regions (Northern Norway, Mid-Norway, Western Norway,

and Southern Norway). Demand is perfectly correlated within a region, but

uncorrelated between the different regions. The last data sets assume no cor-

relation in demand between the different municipalities. For each of the three

groups we generated 2 sets of scenarios, with 100 scenarios each. The first

scenario set has a standard deviation equal to 50% of the expected demand,

whereas the other set has a standard deviation equal to 20% of the expected

value. We also made data sets with 10 scenarios generated from the same

distributions.

5 Computational Results

We present the most important results for problem instances from the Norwe-

gian meat cooperative. In all instances the 435 demand regions and possible

locations for facilities are equal. All calculations were carried out on a PC run-

ning a Linux kernel 2.6.11 with a 3GHz Intel Xeon processor and 6GB RAM.

XpressMP 2004D was used as commercial solver whenever stochastic LP’s were

solved. The parameters ε1 and ε2 are set to 1.0 ·10−20. Test runs indicated that

the initial value for the Lagrangean multipliers has almost no influence on the

results. The maximum number of iterations is set to V = 3000. The parame-

ters η0 and V1, the number of iterations without improvement before reducing

the step size parameter η, were adjusted for each data set in order to produce

reasonable results. Results are given in Table 1. The problem instances are
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described as a combination of the correlation level ((N)ational, (R)egional,

or (U)ncorrelated), standard deviation of the data set σ (50% or 20% of the

expected demand), and the number of scenarios S. The total costs are given

in NOK 1000. The gap between lower bound given by the approximation of

the Lagrangean dual and the upper bound given by the best solution found is

defined as UB−LB
UB

. We also show for each problem instance the expected cost

of implementing the expected value solution: EEV= min
∑S

s=1 psQs(ȳ). Here

ȳ is the optimal solution of the deterministic problem resulting from replacing

all stochastic variables with their expectation.

The deterministic expected value problem is the problem in which all stochas-

tic parameters are set at their expected value. Solving this problem using the

algorithm described in section 3 results in a lower bound of NOK 233.2 million

and a best feasible solution with cost NOK 241.8 million after 3000 iterations

with a computation time of 38 minutes and 5 seconds. The optimality gap

is 3.56%. This gap was reduced to 3% after 25000 iterations and around 330

minutes of computation time. Our method solves the stochastic problem in-

stances within 10% of optimality in 3000 iterations for all but one instance

and often the gap is around 5%. This is acceptable for practical purposes

when solving large real life problem instances which was the target of our

investigation. If better accuracy is required our approach may be integrated

in a branch-and-bound scheme. If a time speed up is needed the algorithm

is suitable for parallelization. The time used to find the solution in the cur-

rent implementation increases linearly in the number of scenarios and in the

number of iterations.

0 The algorithm stops after 2593 iterations.
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In the deterministic model the facility costs account for approximately two

thirds of the expected total costs. This ratio between facility costs and trans-

portation costs appear to be the same for the stochastic problem instances.

The first-stage decisions for the expected value problem and the stochastic

problem instances are shown in Table 2. The numbers correspond to the in-

terval chosen for installed capacity.

Finally let us look more in detail into the characteristics of the solutions

and the effect of the scenario representation chosen. When we compare the

solution of the stochastic problem instances with the deterministic instance

we see that the stochastic version put more weight on flexibility, except for the

uncorrelated instances. This is reasonable as the convex second-stage short-

run cost function motivates investments in more operational flexibility. In fact

the expected value solution is infeasible both for instances with completely

correlated demand and regionally correlated demand, as to little flexibility is

built into the first-stage solution.

If we look at the uncorrelated instances in Table 1 the expected value solution

on the other hand seems to be a good solution, in fact better than the solution

provided by the heuristic. This is easy to explain. When demand is uncorre-

lated high demand in one municipality is more likely to be canceled out by

low demand in another municipality within the same slaughterhouse operat-

ing region; the demand variance in a slaughterhouse region will be smaller

than in the correlated cases. Then less weight is put on flexibility. Although

the location patterns of the correlated problem instances are quite similar to

those of the expected value problem, the choice of linepieces, i. e. the design

capacity, differs. For the correlated and partly correlated cases it seems like

the stochastic models ensure that flexible solutions are chosen.
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This leads us into a discussion of how good the stochastic models represent the

real life decision problem. Clearly the number of scenarios used to represent

uncertainty is important here. The cases with completely correlated and partly

correlated demand have 1 and 4 stochastic variables respectively. Then the 100

scenarios may give a good enough description of the underlying uncertainty.

In general the number of scenarios required to get a good representation of the

uncertainty increases both with higher standard deviations for variables and

when the variables are uncorrelated. The uncorrelated problem instances have

100 scenarios to represent 435 stochastic variables which is too little to give a

good enough description of the underlying uncertainty. When we use too few

scenarios to represent uncertainty in our problem relative to the number of

variables, we may end up with a solution that is infeasible in reality even if it

is feasible for the scenario representation used: For the uncorrelated case we

should increase the number of independent scenarios to represent uncertainty

properly. This would increase the likelihood of high demand scenarios and

thereby increase the probability that the expected value solution is infeasible.

Even in the correlated cases we cannot be sure that the scenario representation

we have chosen is such that infeasibilities will never occur in the real life, but

at least we see that the chosen solutions put more weight on flexibility. This

is also needed for the uncorrelated problem, but we need a higher number

of scenarios to capture the uncertainty. The calculation time set a limit to

the number of scenarios and thereby the number of stochastic variables we

are able to handle in a meaningful way. Parallelization of the algorithm will

reduce solution times and increase this number.
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6 Conclusions

We have shown how to model and solve a facility location problem with a

general objective particularly suited to situations with changing economies

of scale or diseconomies of scale, uncertain costs and uncertain demand. The

computational results are based on a case from the Norwegian meat industry,

but the problem formulation is general enough to apply to other facility loca-

tion problems as well. We motivate our choices of long-run and short-run cost

functions.

Approximating the non-convex non-concave objective function with a piece-

wise linear function allows us to separate the problem both in facilities and

scenarios by applying Lagrangean relaxation. By means of a simple greedy

heuristic, we generate feasible solutions from the solution of the Lagrangean

subproblem. Based on sub-gradient optimization we solve the Lagrangean dual

and achieve acceptable optimality gaps for real-life problems.

Computational results for the real-life case show that modelling uncertainty

in demand and correlations between demand in different regions and munic-

ipalities are important in practice. In our particular case the situation with

uncorrelated demand at first seems to be easier to solve as it can be argued that

the expected value solution in the first stage is a good heuristic choice. This is

not true. In fact if one increases the number of scenarios used to represent un-

certainty, it is likely that the expected value solution will be infeasible. This

we also see when demand is positively correlated. Then the expected value

solution will lead to infeasibility in the second stage because of capacity prob-

lems or induce expensive allocations. The heuristic we have developed seems
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to behave well for the stochastic problems, both in terms of solutions times

that are linear in the number of scenarios and the quality of the solutions. The

solutions provided are better than the ones we get from the expected value

problems. It shows the importance of solving the stochastic models as more

weight is put on flexibility and on avoiding shortfall situations. It provides

solutions with more flexibility, recognizing the variability in demand.

The use of more sophisticated heuristics to generate feasible solutions will

most likely improve the quality of the solutions. A topic for future research

is the use of the bounds obtained by the method described in this paper in

a branch-and-bound scheme. Still in many cases the inaccuracies in both real

data and the descriptions of uncertainty are probably larger than the opti-

mality gaps achieved in our approach at the moment. For many practical

situations, like the case we investigated for the Norwegian meat cooperative,

the suggested Lagrangean relaxation and greedy approach presented here pro-

vide good enough solutions to be valuable as decision support in strategic

processes.
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Initialize: Set g0
jks(λ) = 0, b = 1, and i0 = 1.

Define qs
i = Tij − λs

i + us
k1, ∀i.

Sort the locations i in order of increasing qs
i : qs

1 ≤ · · · ≤ qs
n.

Repeat: Until b > B,
(1) Set xs

ij = LijD
s
i , i = 1, . . . , n, until either

(a) xs
ij = LijD

s
i , ∀i,

or for the first time for some index (ib),
(b) qib > 0, or

(c)
ib

∑

m=1

xs
mj > Qkb+1.

If (a): Set b = B and ib = n. The solution is optimal.
If (b): Set xs

mj = 0, m = ib, . . . , n and b = B. The solution is optimal.

If (c): Set xs
ibj

= Qkb+1 −
∑ib−1

m=1 xs
mj.

(2) Calculate gb
jks(λ) = gb−1

jks (λ) +
ib

∑

m=ib−1

qs
mxs

mj − qs
ib−1



Qkb −
ib−1−1
∑

m=1

xs
mj





(3) If b < B: update qs
m = Tmj − λs

m + ukb+1, m = i1, . . . , n. The sequence
of locations i is not changed.

(4) Set b = b + 1.
Output: gB

jks(λ) is the solution to (25)-(30).

Fig. 5. Solution algorithm for knapsack problem
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AssignToExisting(Input: I, xs,MC,UCs; Output: xs, UCs)

While I 6= ∅:
(1) Choose i ∈ I.

(2) Define J =
{

j |
∑

k>0 yjk = 1, UCs
j < MCj, Lij = 1

}

.

(3) While J 6= ∅ do:
(a) Choose the location j∗ with lowest transportation cost Tij.

(b) Set xs
ij∗ = xs

ij∗ + min
{

MCj∗ − UCs
j∗ ; D

s
i −

∑

j xs
ij

}

.

(c) Update UCs
j∗ = UCs

j∗ + min
{

MCj∗ − UCs
j∗ ; D

s
i −

∑

j xs
ij

}

.

(d) If
∑

j xs
ij = Ds

i : do I = I \ {i} else
J = J \ {j}.

end While.
(4) I = I \ {i}.
end While.

Fig. 6. Subroutine AssignToExisting
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ExpandExisting(Input: I,J , xs,MC,UCs; Output: xs, UCs)

While J 6= ∅ do
(1) For each j ∈ {J } define Ij = {i ∈ I | Lij = 1}.
(2) Choose the set Ij

′ with highest cardinality.
(3) If Ij

′ 6= ∅ do:

(a) Expand the facility at location j
′

, i. e. change yj
′
k = 1 into yj

′
k =

0 and yj
′
k+1 = 1.

(b) Update MCj
′ =

∑

k Qk(B+1)yj
′
k.

(c) For each i ∈ Ij
′ and for each scenario s do:

(i) Set xs
ij

′ = xs
ij

′ + min
{

MCj
′ − UCs

j
′ ; Ds

i −
∑

j xs
ij

}

.

(ii) Update UCs
j
′ = UCs

j
′ + min

{

MCj
′ − UCs

j
′ ; Ds

i −
∑

j xs
ij

}

.

(iii) If
∑

j
′ xs

ij
′ = Ds

i , ∀s do: I = I \ {i} else J = J \
{

j
′

}

.
end For.

Else set J = ∅.
end If.

end While.

Fig. 7. Subroutine ExpandExisting

39



OpenNew(Input: I,J , y, xs,MC,UC; Output: y, x, UCs)

While J 6= ∅ do
(1) For each j ∈ J determine Ij = {i ∈ I | Lij = 1}.
(2) Choose the set Ij

′ with highest cardinality.
(3) If Ij

′ 6= ∅, do For each i ∈ Ij
′ and for each scenario s:

(a) Set xs
ij

′ = Ds
i −

∑

j xs
ij.

(b) Calculate UCs
j
′ = UCs

j
′ + xs

ij
′ , ∀s.

end For.
(4) Choose k such that yj

′
k = 1 and k is the smallest number for which

E(UCs
j
′ ) < MCj

′ = Qk(B+1). Do J = J \ {j
′

}.

(5) If ∃s
′

with UCs
′

j
′ > MCj

′ : set xs
ij = 0, UCs

j = 0, ∀i, j, s, J = ∅.
end While.

Fig. 8. Subroutine OpenNew
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Table 1
Computational results

Problem Instance

Corr. σ S
η0 V1 LB UB CPU-time gap EEV

N 50% 100 1.75 325 236372 257412 38:15:06 8.17% +∞

N 50% 10 2 75 223917 238922 3:30:40 6.28% +∞

N 20% 100 2 50 234583 248850 35:56:12 5.73% +∞

N 20% 10 2 125 232688 244620 3:39:37 4.88% +∞

R 50% 100 1 15 224359 257711 34:38:57 12.94% +∞

R 50% 10 1 18 226249 248720 3:31:30 9.03% 2 +∞

R 20% 100 1.75 125 224558 242057 35:19:33 7.23% +∞

R 20% 10 1.75 100 228726 244972 3:28:44 6.63% +∞

U 50% 100 1.75 150 228464 245637 35:49:27 6.99% 243906

U 50% 10 1.75 125 228447 243934 3:31:09 6.34% 243960

U 20% 100 1.75 125 229789 242543 34:47:57 5.26% 242166

U 20% 10 2 125 231505 243063 3:33:16 4.76% 242224
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Table 2
Slaughterhouse locations and chosen linepieces in the first-stage

N R U

Loc. EV 50% 20% 50% 20% 50% 20%

100 10 100 10 100 10 100 10 100 10 100 10

29 5 6 6 6 6 6 5

40 6 6 6

60 2

64 6 6

78 6

137 2

156 2

172 5 5

174 5

175 6

183 5 5 5 5 6 5 5 5 5

208 2 2 2 2 2 2 2 2 2

209 2 2

214 3

248 6 2

249 5 6 6 6 6 6 5 5 5 5

272 5

280 6 3

292 6

297 5 6 6 6 6 6 6 5

309 6

322 6

329 5

337 5 4

338 6

343 3 3 3

350 6 4 6 6 4

362 3 3 3 3 3 3

365 2

366 2

367 2 2

374 3 6 3 3 3 3 3 3 3

376 3 3 3 3

380 2 2 2

397 3

412 3 3 2 3 3 3 2 2 2 2 3 3

416 2

421 1

426 3

432 2 2 2 2 2 2 2 2 2 2 2 2

EEV — infeasible feasible
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