We examine the dynamical properties of an exclusion process with creation and
annihilation of particles in the framework of a phenomenological domain-wall
theory, by scaling arguments and by numerical simulation. We find that the
length- and time scale are finite in the maximum current phase for finite
creation- and annihilation rates as opposed to the algebraically decaying
correlations of the totally asymmetric simple exclusion process (TASEP).
Critical exponents of the transition to the TASEP are determined. The case
where bulk creation- and annihilation rates vanish faster than the inverse of
the system size N is also analyzed. We point out that shock localization is
possible even for rates proportional to 1/N^a, 1<a<2.Comment: 16 pages, 8 figures, typos corrected, references added, section 4
revise