18 research outputs found

    Global Antifungal Profile Optimization of Chlorophenyl Derivatives against Botrytis cinerea and Colletotrichum gloeosporioides

    Get PDF
    Twenty-two aromatic derivatives bearing a chlorine atom and a different chain in the para or meta position were prepared and evaluated for their in vitro antifungal activity against the phytopathogenic fungi Botrytis cinerea and Colletotrichum gloeosporioides. The results showed that maximum inhibition of the growth of these fungi was exhibited for enantiomers S and R of 1-(40-chlorophenyl)- 2-phenylethanol (3 and 4). Furthermore, their antifungal activity showed a clear structure-activity relationship (SAR) trend confirming the importance of the benzyl hydroxyl group in the inhibitory mechanism of the compounds studied. Additionally, a multiobjective optimization study of the global antifungal profile of chlorophenyl derivatives was conducted in order to establish a rational strategy for the filtering of new fungicide candidates from combinatorial libraries. The MOOPDESIRE methodology was used for this purpose providing reliable ranking models that can be used later

    ANN multiscale model of anti-HIV Drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks

    Get PDF
    [Abstract] This work is aimed at describing the workflow for a methodology that combines chemoinformatics and pharmacoepidemiology methods and at reporting the first predictive model developed with this methodology. The new model is able to predict complex networks of AIDS prevalence in the US counties, taking into consideration the social determinants and activity/structure of anti-HIV drugs in preclinical assays. We trained different Artificial Neural Networks (ANNs) using as input information indices of social networks and molecular graphs. We used a Shannon information index based on the Gini coefficient to quantify the effect of income inequality in the social network. We obtained the data on AIDS prevalence and the Gini coefficient from the AIDSVu database of Emory University. We also used the Balaban information indices to quantify changes in the chemical structure of anti-HIV drugs. We obtained the data on anti-HIV drug activity and structure (SMILE codes) from the ChEMBL database. Last, we used Box-Jenkins moving average operators to quantify information about the deviations of drugs with respect to data subsets of reference (targets, organisms, experimental parameters, protocols). The best model found was a Linear Neural Network (LNN) with values of Accuracy, Specificity, and Sensitivity above 0.76 and AUROC > 0.80 in training and external validation series. This model generates a complex network of AIDS prevalence in the US at county level with respect to the preclinical activity of anti-HIV drugs in preclinical assays. To train/validate the model and predict the complex network we needed to analyze 43,249 data points including values of AIDS prevalence in 2,310 counties in the US vs ChEMBL results for 21,582 unique drugs, 9 viral or human protein targets, 4,856 protocols, and 10 possible experimental measures.Ministerio de Educación, Cultura y Deportes; AGL2011-30563-C03-0

    Quantitative structure-antifungal activity relationships of some benzohydrazides against Botrytis cinerea

    No full text
    Fourteen benzohydrazides have been synthesized and evaluated for their in vitro antifungal activity against the phytopathogenic fungus Botrytis cinerea. The best antifungal activity was observed for the N′,N′- dibenzylbenzohydrazides 3b-d and for the N-aminoisoindoline-derived benzohydrazide 5. A quantitative structure-activity relationship (QSAR) study has been developed using a topological substructural molecular design (TOPS-MODE) approach to interpret the antifungal activity of these synthetic compounds. The model described 98.3% of the experimental variance, with a standard deviation of 4.02. The influence of an ortho substituent on the conformation of the benzohydrazides was investigated by X-ray crystallography and supported by QSAR study. Several aspects of the structure-activity relationships are discussed in terms of the contribution of different bonds to the antifungal activity, thereby making the relationships between structure and biological activity more transparent. © 2007 American Chemical Society.Peer Reviewe

    A quantitative structure- property relationship of gas chromatographic/mass spectrometric retention data of 85 volatile organic compounds as air pollutant materials by multivariate methods

    Get PDF
    <p>Abstract</p> <p>A quantitative structure-property relationship (QSPR) study is suggested for the prediction of retention times of volatile organic compounds. Various kinds of molecular descriptors were calculated to represent the molecular structure of compounds. Modeling of retention times of these compounds as a function of the theoretically derived descriptors was established by multiple linear regression (MLR) and artificial neural network (ANN). The stepwise regression was used for the selection of the variables which gives the best-fitted models. After variable selection ANN, MLR methods were used with leave-one-out cross validation for building the regression models. The prediction results are in very good agreement with the experimental values. MLR as the linear regression method shows good ability in the prediction of the retention times of the prediction set. This provided a new and effective method for predicting the chromatography retention index for the volatile organic compounds.</p
    corecore