4,833 research outputs found
The Formation of Brown Dwarfs: Observations
We review the current state of observational work on the formation of brown
dwarfs, focusing on their initial mass function, velocity and spatial
distributions at birth, multiplicity, accretion, and circumstellar disks. The
available measurements of these various properties are consistent with a common
formation mechanism for brown dwarfs and stars. In particular, the existence of
widely separated binary brown dwarfs and a probable isolated proto-brown dwarf
indicate that some substellar objects are able to form in the same manner as
stars through unperturbed cloud fragmentation. Additional mechanisms such as
ejection and photoevaporation may play a role in the birth of some brown
dwarfs, but there is no observational evidence to date to suggest that they are
the key elements that make it possible for substellar bodies to form.Comment: Protostars and Planets V, in pres
Investigation of -dependent dynamical heterogeneity in a colloidal gel by x-ray photon correlation spectroscopy
We use time-resolved X-Photon Correlation Spectroscopy to investigate the
slow dynamics of colloidal gels made of moderately attractive carbon black
particles. We show that the slow dynamics is temporally heterogeneous and
quantify its fluctuations by measuring the variance of the instantaneous
intensity correlation function. The amplitude of dynamical fluctuations has a
non-monotonic dependence on scattering vector , in stark contrast with
recent experiments on strongly attractive colloidal gels [Duri and Cipelletti,
\textit{Europhys. Lett.} \textbf{76}, 972 (2006)]. We propose a simple scaling
argument for the -dependence of fluctuations in glassy systems that
rationalizes these findings.Comment: Final version published in PR
Palynological Correlation of Atokan and Lower Desmoinesian (Pennsylvanian) Strata Between the Illinois Basin and the Forest City Basin in Eastern Kansas
Palynological correlation is made between Atokan and lower Desmoinesian strata in the Illinois basin and the Forest City basin in eastern Kansas. Spore data from previous studies of coals in the Illinois basin and other coal basins are compared with data from spore assemblages in coal and carbonaceous shale bands in a core drilled in Leavenworth County, Kansas. Correlations are based on first and/or last occurrences of 31 species common to the Illinois basin and eastern Kansas and on significant increases or decreases in abundance of several of those taxa. The oldest coal, which is 26 ft (8 m) above the top of the Mississippian, is early Atokan (early Westphalian B) in age and is approximately equivalent to the Bell coal bed in the Illinois basin. The Riverton coal bed at the top of the studied interval in Kansas is early Desmoinesian (early Westphalian D) and correlates with about the Lewisport coal bed in the Illinois basin. Three coal beds near the base of the Pennsylvanian in three cores drilled in Cherokee County, Kansas, which were also studied, range in age from late Atokan to early Desmoinesian.
As in other coal basins, Lycospora, borne by lycopod trees, greatly dominates the lower and middle Atokan spore assemblages in coals and shale, but spores from ferns, especially tree ferns, significantly increase in abundance in the upper Atokan and lower Desmoinesian. The pattern of change of dominance among Lycospora pellucida, L. granulata, and L. micropapillata in middle Atokan (Westphalian B-C transition) that has been demonstrated earlier in the Illinois basin and eastern Kentucky and Tennessee, also occurs in eastern Kansas. At least 10 species of spores, which appeared in the middle Atokan in other parts of the equatorial coal belt, also appeared at this time in eastern Kansas. Most of these species have their affinities with the ferns, which were adapted to drier habitats than lycopods. Thus, the climate may have become a little drier in the equatorial coal belt during middle Atokan
Component variations and their effects on bipolar nickel-hydrogen cell performance
A 50 cell bipolar nickel-hydrogen battery was assembled to demonstrate the feasibility of constructing a high voltage stack of cells. Various component combinations were tested in this battery. The battery had approximately 1 ampere-hour of capacity and was constructed from components with an active area of 2" X 2". The components were parametrically varied to give a comparison of nickel electrodes, hydrogen electrodes, separators, fill procedures and electrolyte reservoir plate thicknesses. Groups of five cells were constructed using the same components; ten combinations were tested in all. The battery was thoroughly characterized at various change and discharge rates as well as with various pulse patterns and rates. Over a period of 1400 40% DOD LEO cycles some of the groups began to exhibit performance differences. In general, only separator variations had a significant effect on cell performance. It also appears that shunt currents may have been operating within the stack, resulting in electrolyte transfer from one cell to another, thus contributing to cell performance variations
Direct Numerical Simulations of Electrophoresis of Charged Colloids
We propose a numerical method to simulate electrohydrodynamic phenomena in
charged colloidal dispersions. This method enables us to compute the time
evolutions of colloidal particles, ions, and host fluids simultaneously by
solving Newton, advection-diffusion, and Navier--Stokes equations so that the
electrohydrodynamic couplings can be fully taken into account. The
electrophoretic mobilities of charged spherical particles are calculated in
several situations. The comparisons with approximation theories show
quantitative agreements for dilute dispersions without any empirical
parameters, however, our simulation predicts notable deviations in the case of
dense dispersions.Comment: 4pages, 3figures, to appear in Phys. Rev. Let
Contrasting abundance and residency patterns of two sympatric populations of transient killer whales (Orcinus orca) in the northern Gulf of Alaska
Two sympatric populations of “transient” (mammal-eating)
killer whales were photo-identified over 27 years (1984–2010) in Prince William Sound and Kenai Fjords, coastal waters of the northern Gulf of Alaska (GOA). A total of 88 individuals were identified during 203 encounters with “AT1” transients (22 individuals) and 91 encounters with “GOA” transients (66 individuals). The median number of individuals identified annually was similar for both populations (AT1=7; GOA=8), but mark-recapture estimates showed the AT1 whales to have much higher fidelity to the study area, whereas the GOA whales had a higher exchange of
individuals. Apparent survival estimates were generally high for both populations, but there was a significant
reduction in the survival of AT1 transients after the Exxon Valdez oil spill in 1989, with an abrupt decline in estimated abundance from a high of 22 in 1989 to a low of seven whales at the end of 2010. There was no detectable decline in GOA population abundance or survival over the same period, but abundance ranged from just 6 to 18 whales annually. Resighting data from adjacent coastal waters
and movement tracks from satellite tags further indicated that the GOA whales are part of a larger population with a more extensive range, whereas AT1 whales are resident to
the study area
Structure of a liquid crystalline fluid around a macroparticle: Density functional theory study
The structure of a molecular liquid, in both the nematic liquid crystalline
and isotropic phases, around a cylindrical macroparticle, is studied using
density functional theory. In the nematic phase the structure of the fluid is
highly anisotropic with respect to the director, in agreement with results from
simulation and phenomenological theories. On going into the isotropic phase the
structure becomes rotationally invariant around the macroparticle with an
oriented layer at the surface.Comment: 10 pages, 6 figues. Submitted to Phys. Rev.
Electric-field-induced displacement of a charged spherical colloid embedded in an elastic Brinkman medium
When an electric field is applied to an electrolyte-saturated polymer gel
embedded with charged colloidal particles, the force that must be exerted by
the hydrogel on each particle reflects a delicate balance of electrical,
hydrodynamic and elastic stresses. This paper examines the displacement of a
single charged spherical inclusion embedded in an uncharged hydrogel. We
present numerically exact solutions of coupled electrokinetic transport and
elastic-deformation equations, where the gel is treated as an incompressible,
elastic Brinkman medium. This model problem demonstrates how the displacement
depends on the particle size and charge, the electrolyte ionic strength, and
Young's modulus of the polymer skeleton. The numerics are verified, in part,
with an analytical (boundary-layer) theory valid when the Debye length is much
smaller than the particle radius. Further, we identify a close connection
between the displacement when a colloid is immobilized in a gel and its
velocity when dispersed in a Newtonian electrolyte. Finally, we describe an
experiment where nanometer-scale displacements might be accurately measured
using back-focal-plane interferometry. The purpose of such an experiment is to
probe physicochemical and rheological characteristics of hydrogel composites,
possibly during gelation
Multiplicity at the Stellar/Substellar Boundary in Upper Scorpius
We present the results of a high-resolution imaging survey of 12 brown dwarfs
and very low mass stars in the closest (~145 pc) young (~5 Myr) OB association,
Upper Scorpius. We obtained images with the Advanced Camera for Surveys/High
Resolution Camera on HST through the F555W (V), F775W (i'), and F850LP (z')
filters. This survey discovered three new binary systems, including one
marginally resolved pair with a projected separation of only 4.9 AU, resulting
in an observed binary fraction of 25+/-14% at separations >4 AU. After
correcting for detection biases assuming a uniform distribution of mass ratios
for q>0.6, the estimated binary fraction is 33+/-17%. The binary fraction is
consistent with that inferred for higher-mass stars in Upper Sco, but the
separation and mass ratio distributions appear to be different. All three
low-mass binary systems in Upper Sco are tight (<18 AU) and of similar mass
(q>0.6), consistent with expectations based on previous multiplicity studies of
brown dwarfs and very low mass stars in the field and in open clusters. The
implication is that the distinct separation and mass ratio distributions of
low-mass systems are set in the formation process or at very young ages, rather
than by dynamical disruption of wide systems at ages >5 Myr. Finally, we
combine the survey detection limits with the models of Burrows et al. (1997) to
show that there are no planets or very low-mass brown dwarfs with masses >10
M_J at projected separations >20 AU, or masses >5 M_J at projected separations
>40 AU orbiting any of the low-mass (0.04-0.10 M_sun) objects in our sample.Comment: Accepted for publication in ApJ; 10 pages, 4 figures in emulateapj
forma
- …
