1,133 research outputs found

    The SLAC Comparator for the Calibration of Digital Leveling Equipment

    Get PDF
    At SLAC digital levels are used for precise leveling, both for setting out and monitoring. A very high precision of 30 {micro}m is required, which can only be achieved by regularly calibrating the leveling equipment. The calibration facility is also used for detailed investigations to refine the SLAC leveling procedure. In this paper the setup of the SLAC vertical comparator is described. In order to also perform traditional staff calibration a CCD camera was integrated into the SLAC comparator. Finally an overview of further investigations of our leveling equipment is presented

    Molecular serum signature of treatment resistant depression

    Get PDF
    Rationale: A substantial number of patients suffering from major depressive disorder (MDD) do not respond to multiple trials of anti-depressants, develop a chronic course of disease and become treatment resistant. Most of the studies investigating molecular changes in treatment-resistant depression (TRD) have only examined a limited number of molecules and genes. Consequently, biomarkers associated with TRD are still lacking. Objectives: This study aimed to use recently advanced high-throughput proteomic platforms to identify peripheral biomarkers of TRD defined by two staging models, the Thase and Rush staging model (TRM) and the Maudsley Staging Model (MSM). Methods: Serum collected from an inpatient cohort of 65 individuals suffering from MDD was analysed using two different mass spectrometric-based platforms, label-free liquid chromatography mass spectrometry (LC-MSE) and selective reaction monitoring (SRM), as well as a multiplex bead based assay. Results: In the LC-MSE analysis, proteins involved in the acute phase response and complement activation and coagulation were significantly different between the staging groups in both models. In the multiplex bead-based assay analysis TNF-α levels (log(odds) = −4.95, p = 0.045) were significantly different in the TRM comparison. Using SRM, significant changes of three apolipoproteins A–I (β = 0.029, p = 0.035), M (β = −0.017, p = 0.009) and F (β = −0.031, p = 0.024) were associated with the TRM but not the MSM. Conclusion: Overall, our findings suggest that proteins, which are involved in immune and complement activation, may represent potential biomarkers that could be used by clinicians to identify high-risk patients. Nevertheless, given that the molecular changes between the staging groups were subtle, the results need to be interpreted cautiously

    Effects of Potassium and Manganese Promoters on Nitrogen-Doped Carbon Nanotube-Supported Iron Catalysts for CO₂ Hydrogenation

    Get PDF
    Nitrogen-doped carbon nanotubes (NCNTs) were used as a support for iron (Fe) nanoparticles applied in carbon dioxide (CO2) hydrogenation at 633 K and 25 bar (1 bar = 105 Pa). The Fe/NCNT catalyst promoted with both potassium (K) and manganese (Mn) showed high performance in CO2 hydrogenation, reaching 34.9% conversion with a gas hourly space velocity (GHSV) of 3.1 L·(g·h)−1. Product selectivities were high for olefin products and low for short-chain alkanes for the K-promoted catalysts. When Fe/NCNT catalyst was promoted with both K and Mn, the catalytic activity was stable for 60 h of reaction time. The structural effect of the Mn promoter was demonstrated by X-ray diffraction (XRD), temperature-programmed reduction (TPR) with molecular hydrogen (H2), and in situ X-ray absorption near-edge structure (XANES) analysis. The Mn promoter stabilized wüstite (FeO) as an intermediate and lowered the TPR onset temperature. Catalytic ammonia (NH3) decomposition was used as an additional probe reaction for characterizing the promoter effects. The Fe/NCNT catalyst promoted with both K and Mn had the highest catalytic activity, and the Mn-promoted Fe/NCNT catalysts had the highest thermal stability under reducing conditions

    Polyhedral units and network connectivity in calcium aluminosilicate glasses from high-energy x-ray diffraction

    Full text link
    Structure factors for Cax/2AlxSi1-xO2 glasses (x=0,0.25,0.5,0.67) extended to a wave vector of magnitude Q= 40 1/A have been obtained by high-energy x-ray diffraction. For the first time, it is possible to resolve the contributions of Si-O, Al-O and Ca-O coordination polyhedra to the experimental atomic pair distribution functions (PDF). It has been found that both Si and Al are four-fold coordinated and so participate in a continuous tetrahedral network at low values of x. The number of network breaking defects in the form of non-bridging oxygens (NBO's) increases slowly with x until x=0.5 (NBO's ~ 10% at x=0.5). By x=0.67 the network breaking defects become significant as evidenced by the significant drop in the average coordination number of Si. By contrast, Al-O tetrahedra remain free of NBO's and fully integrated in the Al/Si-O network for all values of x. Calcium maintains a rather uniform coordination sphere of approximately 5 oxygen atoms for all values of x. The results suggest that not only Si/Al-O tetrahedra but Ca-O polyhedra, too, play a role in determining the glassy structure

    Stellar Iron Abundances at the Galactic Center

    Get PDF
    We present measurements of [Fe/H] for six M supergiant stars and three giant stars within 0.5 pc of the Galactic Center (GC) and one M supergiant star within 30 pc of the GC. The results are based on high-resolution (lambda / Delta lambda =40,000) K-band spectra, taken with CSHELL at the NASA Infrared Telescope Facility.We determine the iron abundance by detailed abundance analysis,performed with the spectral synthesis program MOOG.The mean [Fe/H] of the GC stars is determined to be near solar,[Fe/H] = +0.12 ±\pm 0.22. Our analysis is a differential analysis, as we have observed and applied the same analysis technique to eleven cool, luminous stars in the solar neighborhood with similar temperatures and luminosities as the GC stars. The mean [Fe/H] of the solar neighborhood comparison stars, [Fe/H] = +0.03 ±\pm 0.16, is similar to that of the GC stars. The width of the GC [Fe/H] distribution is found to be narrower than the width of the [Fe/H] distribution of Baade's Window in the bulge but consistent with the width of the [Fe/H] distribution of giant and supergiant stars in the solar neighborhood.Comment: 41 pages, 9 figures, ApJ, in pres

    Differential requirement of MALT1 for BAFF-induced outcomes in B cell subsets

    Get PDF
    B cell activation factor of the TNF family (BAFF) activates noncanonical nuclear factor κB (NF-κB) heterodimers that promote B cell survival. We show that although MALT1 is largely dispensable for canonical NF-κB signaling downstream of the B cell receptor, the absence of MALT1 results in impaired BAFF-induced phosphorylation of NF-κB2 (p100), p100 degradation, and RelB nuclear translocation in B220+ B cells. This corresponds with impaired survival of MALT1−/− marginal zone (MZ) but not follicular B cells in response to BAFF stimulation in vitro. MALT1−/− MZ B cells also express higher amounts of TRAF3, a known negative regulator of BAFF receptor–mediated signaling, and TRAF3 was found to interact with MALT1. Furthermore, phenotypes associated with overexpression of BAFF, including increased MZ B cell numbers, elevated serum immunoglobulin titers, and spontaneous germinal center formation, were found to be dependent on B cell–intrinsic MALT1 expression. Our results demonstrate a novel role for MALT1 in biological outcomes induced by BAFF-mediated signal transduction

    Evidence for charge localization in the ferromagnetic phase of La_(1-x)Ca_(x)MnO_3 from High real-space-resolution x-ray diffraction

    Full text link
    High real-space-resolution atomic pair distribution functions of La_(1-x)Ca_(x)MnO_3 (x=0.12, 0.25 and 0.33) have been measured using high-energy x-ray powder diffraction to study the size and shape of the MnO_6 octahedron as a function of temperature and doping. In the paramagnetic insulating phase we find evidence for three distinct bond-lengths (~ 1.88, 1.95 and 2.15A) which we ascribe to Mn^{4+}-O, Mn^{3+}-O short and Mn^{3+}-O long bonds respectively. In the ferromagnetic metallic (FM) phase, for x=0.33 and T=20K, we find a single Mn-O bond-length; however, as the metal-insulator transition is approached either by increasing T or decreasing x, intensity progressively appears around r=2.15 and in the region 1.8 - 1.9A suggesting the appearance of Mn^{3+}-O long bonds and short Mn^{4+}-O bonds. This is strong evidence that charge localized and delocalized phases coexist close to the metal-insulator transition in the FM phase.Comment: 8 pages, 8 postscript figures, submitted to Phys. Rev.
    corecore