263 research outputs found

    Formation of magnetic skyrmions with tunable properties in PdFe bilayer deposited on Ir(111)

    Get PDF
    We perform an extensive study of the spin-configurations in a PdFe bilayer on Ir(111) in terms of ab initio and spin-model calculations. We use the spin-cluster expansion technique to obtain spin model parameters, and solve the Landau-Lifshitz-Gilbert equations at zero temperature. In particular, we focus on effects of layer relaxations and the evolution of the magnetic ground state in external magnetic field. In the absence of magnetic field, we find a spin-spiral ground state, while applying external magnetic field skyrmions are generated in the system. Based on energy calculations of frozen spin configurations with varying magnetic field we obtain excellent agreement for the phase boundaries with available experiments. We find that the wave length of spin-spirals and the diameter of skyrmions decrease with increasing inward Fe layer relaxation which is correlated with the increasing ratio of the nearest-neighbor Dzyaloshinskii-Moriya interaction and the isotropic exchange coupling, D/JD/J. Our results also indicate that the applied field needed to stabilize the skyrmion lattice increases when the diameter of individual skyrmions decreases. Based on our observations, we suggest that the formation of the skyrmion lattice can be tuned by small structural modification of the thin film.Comment: 7 pages, 5 figures, 2 table

    The Sterilization of Escherichia coli with Black Diamond-Coated Silicon

    Get PDF
    In order to combat increasing levels of antimicrobial resistance, new antimicrobials are needed to successfully kill microbes. Silicon coated in black diamond is a material that is hypothesized to have antimicrobial properties. To test this hypothesis, Escherichia coli cells were placed on different black diamond-coated silicon surfaces and allowed to rest on each surface for 15 minutes, 30 minutes, and 1 hour. Cells were collected, and growth was assessed by counting colonies on plates or spectrophotometry growth curves. The results of this study indicated that the experimental samples have some antimicrobial or growth inhibition properties, but they may not be to the extent as hypothesized. Errors in the harvesting method were likely present, and the experimental technique is currently being modified to collect the maximum number of cells for growth assessment

    Breaking through the Mermin-Wagner limit in 2D van der Waals magnets

    Get PDF
    The Mermin-Wagner theorem states that long-range magnetic order does not exist in one- or two-dimensional (2D) isotropic magnets with short-ranged interactions. The theorem has been a milestone in magnetism and has been driving the research of recently discovered 2D van der Waals (vdW) magnetic materials from fundamentals up to potential applications. In such systems, the existence of magnetic ordering is typically attributed to the presence of a significant magnetic anisotropy, which is known to introduce a spin-wave gap and circumvent the core assumption of the theorem. Here we show that in finite-size 2D vdW magnets typically found in lab setups (e.g., within millimetres), short-range interactions can be large enough to allow the stabilisation of magnetic order at finite temperatures without any magnetic anisotropy for practical implementations. We demonstrate that magnetic ordering can be created in flakes of 2D materials independent of the lattice symmetry due to the intrinsic nature of the spin exchange interactions and finite-size effects in two-dimensions. Surprisingly we find that the crossover temperature, where the intrinsic magnetisation changes from superparamagnetic to a completely disordered paramagnetic regime, is weakly dependent on the system length, requiring giant sizes (e.g., of the order of the observable universe ~1026^{26} m) in order to observe the vanishing of the magnetic order at cryogenic temperatures as expected from the Mermin-Wagner theorem. Our findings indicate exchange interactions as the main driving force behind the stabilisation of short-range order in 2D magnetism and broaden the horizons of possibilities for exploration of compounds with low anisotropy at an atomically thin level

    Data incongruence and the problem of avian louse phylogeny

    Get PDF
    Recent studies based on different types of data (i.e. morphological and molecular) have supported conflicting phylogenies for the genera of avian feather lice (Ischnocera: Phthiraptera). We analyse new and published data from morphology and from mitochondrial (12S rRNA and COI) and nuclear (EF1-) genes to explore the sources of this incongruence and explain these conflicts. Character convergence, multiple substitutions at high divergences, and ancient radiation over a short period of time have contributed to the problem of resolving louse phylogeny with the data currently available. We show that apparent incongruence between the molecular datasets is largely attributable to rate variation and nonstationarity of base composition. In contrast, highly significant character incongruence leads to topological incongruence between the molecular and morphological data. We consider ways in which biases in the sequence data could be misleading, using several maximum likelihood models and LogDet corrections. The hierarchical structure of the data is explored using likelihood mapping and SplitsTree methods. Ultimately, we concede there is strong discordance between the molecular and morphological data and apply the conditional combination approach in this case. We conclude that higher level phylogenetic relationships within avian Ischnocera remain extremely problematic. However, consensus between datasets is beginning to converge on a stable phylogeny for avian lice, at and below the familial rank

    Reakcija β-amino-α,γ-dicianokrotononitrila s acetofenonom: sinteza derivata piridina, piridazina i tiofena s antimikrobnim djelovanjem

    Get PDF
    Condensation of β-amino-α,γ-dicyanocrotononitrile (1) with acetophenone gave the 2-amino-4-phenylpenta-1,3-diene-1,1,3-tricarbonitrile (2). The latter product was used in a series of heterocyclization reactions when react with different reagents like diazonium salts, hydrazines, hydroxylamine and elemental sulfur to give pyridazine, pyrazole, isoxazole and thiophene derivatives, respectively. On the other hand, it gave pyridine derivatives with aromatic aldehydes followed by reaction with cyanomethylene reagents. The MIC values for the newly synthesized product were measured against E. coli, B. cereus, B. subtilis and C. albicansKondenzacijom β-amino-α,γ-dicijanokrotononitrila 1 s acetofenonom dobiven je 2-amino-4-fenilpenta-1,3-dien-1,1,3-trikarbonitril (2) koji je upotrebljen u reakcijama heterociklizacije s različitim reagensima poput diazonijevih soli, hidrazina, hidroksilamina i elementarnog sumpora pri čemu su nastali derivati piridazina, pirazola, izoksazola, odnosno tiofena. Spoj 2 je u reakciji s aromatskim aldehidima te naknadno sa cijanometilenima dao derivate piridina. Određene su MIC vrijednosti za novosintetizirane spojeve protiv E. coli, B. cereus, B. subtilis i C. albicans

    Glucocorticoids with different chemical structures but similar glucocorticoid receptor potency regulate subsets of common and unique genes in human trabecular meshwork cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In addition to their well-documented ocular therapeutic effects, glucocorticoids (GCs) can cause sight-threatening side-effects including ocular hypertension presumably via morphological and biochemical changes in trabecular meshwork (TM) cells. In the present study, we directly compared the glucocorticoid receptor (GR) potency for dexamethasone (DEX), fluocinolone acetonide (FA) and triamcinolone acetonide (TA), examined the expression of known GRα and GRβ isoforms, and used gene expression microarrays to compare the effects of DEX, FA, and TA on the complete transcriptome in two primary human TM cell lines.</p> <p>Methods</p> <p>GR binding affinity for DEX, FA, and TA was measured by a cell-free competitive radio-labeled GR binding assay. GR-mediated transcriptional activity was assessed using the GeneBLAzer beta-lactamase reporter gene assay. Levels of GRα and GRβ isoforms were assessed by Western blot. Total RNA was extracted from TM 86 and TM 93 cells treated with 1 μM DEX, FA, or TA for 24 hr and used for microarray gene expression analysis. The microarray experiments were repeated three times. Differentially expressed genes were identified by Rosetta Resolver Gene Expression Analysis System.</p> <p>Results</p> <p>The GR binding affinity (IC<sub>50</sub>) for DEX, FA, and TA was 5.4, 2.0, and 1.5 nM, respectively. These values are similar to the GR transactivation EC<sub>50 </sub>of 3.0, 0.7, and 1.5 nM for DEX, FA, and TA, respectively. All four GRα translational isoforms (A-D) were expressed in TM 86 and TM 93 total cell lysates, however, the C and D isoforms were more highly expressed relative to A and B. All four GRβ isoforms (A-D) were also detected in TM cells, although GRβ-D isoform expression was lower compared to that of the A, B, or C isoforms. Microarray analysis revealed 1,968 and 1,150 genes commonly regulated by DEX, FA, and TA in TM 86 and TM 93, respectively. These genes included RGC32, OCA2, ANGPTL7, MYOC, FKBP5, SAA1 and ZBTB16. In addition, each GC specifically regulated a unique set of genes in both TM cell lines. Using Ingenuity Pathway Analysis (IPA) software, analysis of the data from TM 86 cells showed that DEX significantly regulated transcripts associated with RNA post-transcriptional modifications, whereas FA and TA modulated genes involved in lipid metabolism and cell morphology, respectively. In TM 93 cells, DEX significantly regulated genes implicated in histone methylation, whereas FA and TA altered genes associated with cell cycle and cell adhesion, respectively.</p> <p>Conclusion</p> <p>Human trabecular meshwork cells in culture express all known GRα and GRβ translational isoforms, and GCs with similar potency but subtly different chemical structure are capable of regulating common and unique gene subsets and presumably biologic responses in these cells. These GC structure-dependent effects appear to be TM cell-lineage dependent.</p

    Bio-Ecology of the Louse, Upupicola upupae, Infesting the Common Hoopoe, Upupa epops

    Get PDF
    The population characteristics of the louse, Upupicola upupae (Shrank) (Mallophaga: Philopteridae: Ishnocera), infesting the Common Hoopae, Upupa epops L. (Aves: Upupiformes), were recorded during 2007–08 in District Rampur, Uttar Pradesh India. The pattern of frequency distribution of the louse conformed to the negative binomial model. The lice and its nits were reared in vitro at 35 ± 1° C, 75–82 % RH, on a feather diet. The data obtained was used to construct the life table and to determine the intrinsic rate of natural increase (0.035 female/day), the net reproductive rate was 3.67 female eggs/female, the generation time was 37 days, and the doubling time of the population was 19 days. The chaetotaxy of the three nymphal instars has also been noted to record their diagnostic characteristics. Information on egg morphology and antennal sensilla is also presented

    Heat and charge transport in H2O at ice-giant conditions from ab initio molecular dynamics simulations

    Get PDF
    The impact of the inner structure and thermal history of planets on their observable features, such as luminosity or magnetic field, crucially depends on the poorly known heat and charge transport properties of their internal layers. The thermal and electric conductivities of different phases of water (liquid, solid, and super-ionic) occurring in the interior of ice giant planets, such as Uranus or Neptune, are evaluated from equilibrium ab initio molecular dynamics, leveraging recent progresses in the theory and data analysis of transport in extended systems. The implications of our findings on the evolution models of the ice giants are briefly discussed

    Acute effects of intracranial hypertension and ARDS on pulmonary and neuronal damage: a randomized experimental study in pigs

    Get PDF
    Abstract PURPOSE: To determine reciprocal and synergistic effects of acute intracranial hypertension and ARDS on neuronal and pulmonary damage and to define possible mechanisms. METHODS: Twenty-eight mechanically ventilated pigs were randomized to four groups of seven each: control; acute intracranial hypertension (AICH); acute respiratory distress syndrome (ARDS); acute respiratory distress syndrome in combination with acute intracranial hypertension (ARDS + AICH). AICH was induced with an intracranial balloon catheter and the inflation volume was adjusted to keep intracranial pressure (ICP) at 30-40 cmH2O. ARDS was induced by oleic acid infusion. Respiratory function, hemodynamics, extravascular lung water index (ELWI), lung and brain computed tomography (CT) scans, as well as inflammatory mediators, S100B, and neuronal serum enolase (NSE) were measured over a 4-h period. Lung and brain tissue were collected and examined at the end of the experiment. RESULTS: In both healthy and injured lungs, AICH caused increases in NSE and TNF-alpha plasma concentrations, extravascular lung water, and lung density in CT, the extent of poorly aerated (dystelectatic) and atelectatic lung regions, and an increase in the brain tissue water content. ARDS and AICH in combination induced damage in the hippocampus and decreased density in brain CT. CONCLUSIONS: AICH induces lung injury and also exacerbates pre-existing damage. Increased extravascular lung water is an early marker. ARDS has a detrimental effect on the brain and acts synergistically with intracranial hypertension to cause histological hippocampal damage
    corecore