441 research outputs found

    Christian Theology for Roman Catholic Law Schools

    Get PDF
    Roman Catholic universities maintain law schools for theological purposes. This Article discusses the five steps to explaining the theological answer to why there are Catholic law schools—first, the presence of the law school is the presence of the church; second, the presence of the law school is the presence of service; third, the presence of the law school is a presence in the world; fourth, the presence of the law school in the world is enacted vicariously; and fifth, the presence of the law school in the world is a searching presence that reaches into the world to find out how to form those who are to go into the world to be the presence of the church

    Christian Theology for Roman Catholic Law Schools

    Get PDF
    Roman Catholic universities maintain law schools for theological purposes. This Article discusses the five steps to explaining the theological answer to why there are Catholic law schools—first, the presence of the law school is the presence of the church; second, the presence of the law school is the presence of service; third, the presence of the law school is a presence in the world; fourth, the presence of the law school in the world is enacted vicariously; and fifth, the presence of the law school in the world is a searching presence that reaches into the world to find out how to form those who are to go into the world to be the presence of the church

    An XMM-Newton view of FeK{\alpha} in HMXBs

    Full text link
    We present a comprehensive analysis of the whole sample of available XMM-Newton observations of High Mass X-ray Binaries (HMXBs) until August, 2013, focusing on the FeK{\alpha} emission line. This line is a key tool to better understand the physical properties of the material surrounding the X-ray source within a few stellar radii (the circumstellar medium). We have collected observations from 46 HMXBs, detecting FeK{\alpha} in 21 of them. We have used the standard classification of HMXBs to divide the sample in different groups. We find that: (1) FeK{\alpha} is centred at a mean value of 6.42 keV. Considering the instrumental and fits uncertainties, this value is compatible with ionization states lower than FeXVIII. (2) The flux of the continuum is well correlated with the flux of the line, as expected. Eclipse observations show that the Fe fluorescence emission comes from an extended region surrounding the X-ray source. (3) FeK{\alpha} is narrow (width lower than 0.15keV), reflecting that the reprocessing material does not move at high speeds. We attempt to explain the broadness of the line in terms of three possible broadening phenomena: line blending, Compton scattering and Doppler shifts (with velocities of the reprocessing material V=1000-2000 km/s). (4) The equivalent hydrogen column (NH) directly correlates with the EW of FeK{\alpha}, displaying clear similarities to numerical simulations. It highlights the strong link between the absorbing and the fluorescent matter. The obtained results clearly point to a very important contribution of the donors wind in the FeK{\alpha} emission and the absorption when the donor is a supergiant massive star.Comment: Accepted for publication in A&A. 13 pages, 16 figures + Appendice

    Spectroscopy of high mass X-ray binaries with Swift/XRT

    Get PDF
    We present the X-ray spectroscopy study of three high mass X-ray binary systems, Vela X-1, Cen X-3 and V0332+53 using data obtained with Swift/XRT. The continuum emission of Vela X-1 is consistent with two absorbed power laws, each of them modified by different absorbing columns and with the same power law index. Moreover, the high energy part of the spectrum is modified by absorption components, like Gaussian profile, smedge} or edge} functions. We also detect emission lines and fit as Gaussians at 6.406^+0.004_-0.021 keV (Fe Kalpha) and 2.44^+0.04_-0.03 keV (S XV He_alpha). The continuum emission of Cen X-3 is consistent with two absorbed power laws, each of them modified by different absorbing columns and with the same power law index. We also detect emission lines and fit as Gaussians at 6.432^+0.020_-0.023 keV (Fe Kalpha), 6.84^+0.12_-0.10 keV (Fe XXVI), 2.90 +/- 0.18 keV Ar Kalpha and 1.12^+0.07_-0.06 keV (Ne X Ly_alpha). The presence of iron emission lines at 6.4 keV and 6.8 keV simultaneously indicates that there are at least two distinct emission sites. Fluorescence in a localized region of relatively low ionization may be responsible for the 6.4 keV emission. We could interpret the emission line at 6.8 keV as a blend of several narrow lines due to scattering of radiation from the neutron star in an extended highly ionized stellar wind. Finally, the continuum emission of V0332+53 is consistent with an absorbed power law and a Gaussian emission line to describe the soft excess at low energies. No emission lines are present in this system.Part of this work was supported by the Spanish Ministry of Education and Science Primera ciencia con el GTC: La astronomía española en vanguardia de la astronomía europea CSD200670 and Multiplicidad y evolución de estrellas masivas project number AYA200806166C0303. KLP and JPO acknowledge support from STFC. JMT & JJRR acknowledge support by the Spanish Ministerio de Educación y Ciencia (MEC) under grants PR2007-0176 & PR2009-0455. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester

    Resolving iron emission lines in 4U 1538-52 with XMM-Newton

    Get PDF
    The X-ray Universe 2011, Presentations of the Conference held in Berlin, Germany, 27-30 June 2011. Available online at: http://xmm.esac.esa.int/external/xmm_science/workshops/2011symposium/, article id.275We present the results of a XMM-Newton observation of the high-mass X-ray binary 4U 1538-52 at orbital phases between 0.75-1.00 (in the eclipse-ingress phase). Here we concentrate on the study of discrete features in the energy range from 5.9 keV to 7.8 keV, i.e. on the iron Kα line region, using the EPIC/PN instrument on board XMM-Newton observatory. We clearly see a Kα neutral iron line at around 6.4 keV and were able to distinguish two hot lines from highly photoionized Fe XXV and Fe XXVI. We discuss the implications of the simultaneous presence of iron with both low and high ionization levels.This work was supported by the Spanish Ministry of Education and Science De INTEGRAL a IXO: binarias de rayos X y estrellas activas AYA2010-15431 and partially supported by Primera ciencia con el GTC: La astronomía española en vanguardia de la astronomía europea CSD200670. KLP and JPO acknowledge support from the UK Space Agency. JJRR acknowledges support by the Spanish Ministerio de Educación y Ciencia (MEC) under grant PR2009-0455. This work made use of data obtained through the XMM-Newton Science Archive (XSA), rovided by European Space Agency (ESA)

    Caracterización petrográfica y petrofísica de la roca encajante de la Cueva del Rull (Vall d'Ebo, Alicante)

    Get PDF
    La Cueva del Rull se encuentra en el sector nororiental de la Cordillera Bética, en el denominado Prebético Externo de Alicante (Azema 1977). Regionalmente, la zona de estudio está dominada por la dinámica compresiva de los materiales calizos existentes (Cretácico Superior) afectados, desde el Mioceno Medio y durante el Mioceno Superior, por diversos movimientos tectónicos a partir de los cuales se origina la Depresión de la Vall d'Ebo. Esta fosa tectónica, cuyos bordes norte y sur quedan delimitados por fallas normales con dirección aproximada E-O, está rellena por materiales rudíticos de edad Mioceno Superior, predominantemente conglomeráticos, de espesor variable (decenas a más de 100 metros), localmente plegados y depositados sobre margas de facies “tap” (margas mal estratificadas de carácter arcillo-limoso, desagregadas y de color blanquecino en superficie, cuya edad se atribuye al Mioceno Medio).Este trabajo ha sido financiado por el proyecto CGL2011-25162 del Ministerio de Economía y Competitividad. C. Pla cuenta con una beca predoctoral del MEC correspondiente a dicho Proyecto
    corecore