We present a comprehensive analysis of the whole sample of available
XMM-Newton observations of High Mass X-ray Binaries (HMXBs) until August, 2013,
focusing on the FeK{\alpha} emission line. This line is a key tool to better
understand the physical properties of the material surrounding the X-ray source
within a few stellar radii (the circumstellar medium). We have collected
observations from 46 HMXBs, detecting FeK{\alpha} in 21 of them. We have used
the standard classification of HMXBs to divide the sample in different groups.
We find that: (1) FeK{\alpha} is centred at a mean value of 6.42 keV.
Considering the instrumental and fits uncertainties, this value is compatible
with ionization states lower than FeXVIII. (2) The flux of the continuum is
well correlated with the flux of the line, as expected. Eclipse observations
show that the Fe fluorescence emission comes from an extended region
surrounding the X-ray source. (3) FeK{\alpha} is narrow (width lower than
0.15keV), reflecting that the reprocessing material does not move at high
speeds. We attempt to explain the broadness of the line in terms of three
possible broadening phenomena: line blending, Compton scattering and Doppler
shifts (with velocities of the reprocessing material V=1000-2000 km/s). (4) The
equivalent hydrogen column (NH) directly correlates with the EW of FeK{\alpha},
displaying clear similarities to numerical simulations. It highlights the
strong link between the absorbing and the fluorescent matter. The obtained
results clearly point to a very important contribution of the donors wind in
the FeK{\alpha} emission and the absorption when the donor is a supergiant
massive star.Comment: Accepted for publication in A&A. 13 pages, 16 figures + Appendice