498 research outputs found

    Mpemba effect and phase transitions in the adiabatic cooling of water before freezing

    Full text link
    An accurate experimental investigation on the Mpemba effect (that is, the freezing of initially hot water before cold one) is carried out, showing that in the adiabatic cooling of water a relevant role is played by supercooling as well as by phase transitions taking place at 6 +/- 1 oC, 3.5 +/- 0.5 oC and 1.3 +/- 0.6 oC, respectively. The last transition, occurring with a non negligible probability of 0.21, has not been detected earlier. Supported by the experimental results achieved, a thorough theoretical analysis of supercooling and such phase transitions, which are interpreted in terms of different ordering of clusters of molecules in water, is given.Comment: revtex, 4 pages, 2 figure

    A convergent decomposition algorithm for support vector machines.

    Get PDF
    In this work we consider nonlinear minimization problems with a single linear equality constraint and box constraints. In particular we are interested in solving problems where the number of variables is so huge that traditional optimization methods cannot be directly applied. Many interesting real world problems lead to the solution of large scale constrained problems with this structure. For example, the special subclass of problems with convex quadratic objective function plays a fundamental role in the training of Support Vector Machine, which is a technique for machine learning problems. For this particular subclass of convex quadratic problem, some convergent decomposition methods, based on the solution of a sequence of smaller subproblems, have been proposed. In this paper we define a new globally convergent decomposition algorithm that differs from the previous methods in the rule for the choice of the subproblem variables and in the presence of a proximal point modification in the objective function of the subproblems. In particular, the new rule for sequentially selecting the subproblems appears to be suited to tackle large scale problems, while the introduction of the proximal point term allows us to ensure the global convergence of the algorithm for the general case of nonconvex objective function. Furthermore, we report some preliminary numerical results on support vector classification problems with up to 100 thousands variables

    Dynamic Effects of Wind Loads on a Gravity Damper

    Get PDF
    AbstractThe gravity damper is safety device used for the air treatment that prevent overpressure inside the unit through the opening. It is a normally closed valve under the effect of the gravity force, which, under the action of the incident air flow, allows to manage any excess mass. Clearly, although the device is rather simple and therefore reliable, the operating conditions may prove burdensome, especially if the gravity dampers are applied to installations of energy transformation, such as the gas turbines; this is mainly due to the need to develop large masses of air at speeds rather incurred. This article describes an experiment carried out on a gravity damper designed to be installed in a gas turbine. The characterization has been performed in numerical (CFD-FEM), considering both the mode shapes and the natural frequencies of the device in working condition as well as any phenomenon of detachment of the fluid that can trigger vortex shedding and subsequently validated in the wind tunnel facilities of the University of Perugia. In particular, what is wanted to be highlighted is the fact that, after a preliminary analysis, it has been clearly evident that, under the operating conditions, the structure would be affected by phenomena of vortex shedding. The shedding frequency is next to some natural frequencies of the structure, with obvious repercussions on the integrity of the structure. An experimental vibration analysis performed in the wind tunnel at flow regime has in fact allowed to identify the phenomenon of lock-in

    Precipitation Water Stable Isotopes in the South Tibetan Plateau: Observations and Modeling

    Get PDF
    International audienceMeasurements of precipitation isotopic composition have been conducted on a daily basis for 1 yr at Bomi, in the southeast Tibetan Plateau, an area affected by the interaction of the southwest monsoon, the westerlies, and Tibetan high pressure systems, as well as at Lhasa, situated west of Bomi. The measured isotope signals are analyzed both on an event basis and on a seasonal scale using available meteorological information and airmass trajectories. The processes driving daily and seasonal isotopic variability are investigated using multidecadal climate simulations forced by twentieth-century boundary conditions and conducted with two different isotopic atmospheric general circulation models [the isotopic version of the Laboratoire de Meteorologie Dynamique GCM (LMDZiso) and the ECHAM4iso model]. Both models use specific nudging techniques to mimic observed atmospheric circulation fields. The models simulate a wet and cold bias on the Tibetan Plateau together with a dry bias in its southern part. A zoomed LMDZ simulation conducted with similar to 50-km local spatial resolution dramatically improves the simulation of isotopic compositions of precipitation on the Tibetan Plateau. Simulated water isotope fields are compared with new data and with previous observations, and regional differences in moisture origins are analyzed using back-trajectories. Here, the focus is on relationships between the water isotopes and climate variables on an event and seasonal scale and in terms of spatial and altitudinal isotopic gradients. Enhancing the spatial resolution is crucial for improving the simulation of the precipitation isotopic composition

    Is growth hormone insufficiency the missing link between obesity, male gender, age, and COVID-19 severity?

    Get PDF
    Evidence has emerged regarding an increased risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with worse prognosis in elderly male patients with obesity, and blunted growth hormone (GH) secretion represents a feature of this population subgroup. Here, a comprehensive review of the possible links between GH–insulinlike growth factor 1 axis impairment and coronavirus disease 2019 (COVID-19) severity is offered. First, unequivocal evidence suggests that immune system dysregulation represents a key element in determining SARS-CoV-2 severity, as well as the association with adult-onset GH deficiency (GHD); notably, if GH is physiologically involved in the development and maintenance of the immune system, its pharmacological replacement in GHD patients seems to positively influence their inflammatory status. In addition, the impaired fibrinolysis associated with GHD may represent a further link between GH–insulin-like growth factor 1 axis impairment and COVID-19 severity, as it has been associated with both conditions. In conclusion, several sources of evidence have supported a relationship between GHD and COVID-19, and they also shed light upon potential beneficial effects of recombinant GH treatment on COVID-19 patients

    Ariel - Volume 8 Number 3

    Get PDF
    Executive Editor James W. Lockard, Jr. Business Manager Neeraj K. Kanwal University News Richard J . Perry World News Doug Hiller Opinions Elizabeth A. McGuire Features Patrick P. Sokas Sports Desk Shahab S. Minassian Managing Editor Edward H. Jasper Managing Associate Brenda Peterson Photography Editor Robert D. Lehman. Jr. Graphics Christine M. Kuhnl

    Ariel - Volume 8 Number 4

    Get PDF
    Executive Editor James W. Lockard Jr. Issues Editor Neeraj K. Kanwal Business Manager Neeraj K. Kanwal University News Martin Trichtinger World News Doug Hiller Opinions Elizabeth A. McGuire Features Patrick P. Sokas Sports Desk Shahab S. Minassian Managing Editor Edward H. Jasper Managing Associate Brenda Peterson Photography Editor Robert D. Lehman, Jr. Graphics Christine M. Kuhnl

    Space/Time Noncommutativity in String Theories without Background Electric Field

    Get PDF
    The appearance of space/time non-commutativity in theories of open strings with a constant non-diagonal background metric is considered. We show that, even if the space-time coordinates commute, when there is a metric with a time-space component, no electric field and the boundary condition along the spatial direction is Dirichlet, a Moyal phase still arises in products of vertex operators. The theory is in fact dual to the non-commutatitive open string (NCOS) theory. The correct definition of the vertex operators for this theory is provided. We study the system also in the presence of a BB field. We consider the case in which the Dirichlet spatial direction is compactified and analyze the effect of these background on the closed string spectrum. We then heat up the system. We find that the Hagedorn temperature depends in a non-extensive way on the parameters of the background and it is the same for the closed and the open string sectors.Comment: 18 pages, JHEP styl
    corecore