24,103 research outputs found

    Forecasting intermittent demand

    Get PDF
    Methods for forecasting intermittent demand are compared using a large data-set from the UK Royal Air Force (RAF). Several important results are found. First, we show that the traditional per period forecast error measures are not appropriate for intermittent demand, even though they are consistently used in the literature. Second, by comparing target service levels to achieved service levels when inventory decisions are based on demand forecasts, we show that Croston's method (and a variant) and Bootstrapping clearly outperform Moving Average and Single Exponential Smoothing. Third, we show that the performance of Croston and Bootstrapping can be significantly improved by taking into account that each lead time starts with a demand

    The design and construction of the CAD-1 airship

    Get PDF
    The background history, design philosophy and Computer application as related to the design of the envelope shape, stress calculations and flight trajectories of the CAD-1 airship, now under construction by Canadian Airship Development Corporation are reported. A three-phase proposal for future development of larger cargo carrying airships is included

    A simplified PERT system

    Get PDF
    Modified PERT technique processes the input data and arranges it in familiar graphic form in a booklet which is issued at periodic intervals. The tabulated data provides readily available information to management personnel concerned with monitoring the progress of a program

    A study of resistojet systems directed to the space station/base Final report

    Get PDF
    Biowaste resistojet subsystem for integrated environmental control and life support of space statio

    Measurement of the SOC State Specific Heat in ^4He

    Get PDF
    When a heat flux Q is applied downward through a sample of liquid 4He near the lambda transition, the helium self organizes such that the gradient in temperature matches the gravity induced gradient in Tlambda. All the helium in the sample is then at the same reduced temperature tSOC = ((T[sub SOC] - T[sub lambda])/T[sub lambda]) and the helium is said to be in the Self-Organized Critical (SOC) state. We have made preliminary measurements of the 4He SOC state specific heat, C[del]T(T(Q)). Despite having a cell height of 2.54 cm, our results show no difference between C[del]T and the zero-gravity 4He specific heat results of the Lambda Point Experiment (LPE) [J.A. Lipa et al., Phys. Rev. B, 68, 174518 (2003)] over the range 250 to 450 nK below the transition. There is no gravity rounding because the entire sample is at the same reduced temperature tSOC(Q). Closer to Tlambda the SOC specific heat falls slightly below LPE, reaching a maximum at approximately 50 nK below Tlambda, in agreement with theoretical predictions [R. Haussmann, Phys. Rev. B, 60, 12349 (1999)]

    Effect of Inhomogeneous Heat Flow on the Enhancement of Heat Capacity in Helium-II by Counterflow near Tλ

    Get PDF
    In 2000 Harter et al. reported the first measurements of the enhancement of the heat capacity ΔCQ[equivalent]C(Q)-C(Q=0) of helium-II transporting a heat flux density Q near Tλ. Surprisingly, their measured ΔCQ was ~7–12 times larger than predicted, depending on which theory was assumed. In this report we present a candidate explanation for this discrepancy: unintended heat flux inhomogeneity. Because C(Q) should diverge at a critical heat flux density Qc, homogeneous heat flow is required for an accurate measurement. We present results from numerical analysis of the heat flow in the Harter et al. cell indicating that substantial inhomogeneity occurred. We determine the effect of the inhomogeneity on ΔCQ and find rough agreement with the observed disparity between prediction and measurement

    Implementation and evaluation of simultaneous video-electroencephalography and functional magnetic resonance imaging

    Get PDF
    The objective of this study was to demonstrate that the addition of simultaneous and synchronised video to electroencephalography (EEG)-correlated functional magnetic resonance imaging (fMRI) could increase recorded information without data quality reduction. We investigated the effect of placing EEG, video equipment and their required power supplies inside the scanner room, on EEG, video and MRI data quality, and evaluated video-EEG-fMRI by modelling a hand motor task. Gradient-echo, echo-planner images (EPI) were acquired on a 3-T MRI scanner at variable camera positions in a test object [with and without radiofrequency (RF) excitation], and human subjects. EEG was recorded using a commercial MR-compatible 64-channel cap and amplifiers. Video recording was performed using a two-camera custom-made system with EEG synchronization. An in-house script was used to calculate signal to fluctuation noise ratio (SFNR) from EPI in test object with variable camera positions and in human subjects with and without concurrent video recording. Five subjects were investigated with video-EEG-fMRI while performing hand motor task. The fMRI time series data was analysed using statistical parametric mapping, by building block design general linear models which were paradigm prescribed and video based. Introduction of the cameras did not alter the SFNR significantly, nor did it show any signs of spike noise during RF off conditions. Video and EEG quality also did not show any significant artefact. The Statistical Parametric Mapping{T} maps from video based design revealed additional blood oxygen level-dependent responses in the expected locations for non-compliant subjects compared to the paradigm prescribed design. We conclude that video-EEG-fMRI set up can be implemented without affecting the data quality significantly and may provide valuable information on behaviour to enhance the analysis of fMRI data
    • …
    corecore