508 research outputs found

    Highly anisotropic energy gap in superconducting Ba(Fe0.9_{0.9}Co0.1_{0.1})2_{2}As2_{2} from optical conductivity measurements

    Full text link
    We have measured the complex dynamical conductivity, σ=σ1+iσ2\sigma = \sigma_{1} + i\sigma_{2}, of superconducting Ba(Fe0.9_{0.9}Co0.1_{0.1})2_{2}As2_{2} (Tc=22T_{c} = 22 K) at terahertz frequencies and temperatures 2 - 30 K. In the frequency dependence of σ1\sigma_{1} below TcT_{c}, we observe clear signatures of the superconducting energy gap opening. The temperature dependence of σ1\sigma_{1} demonstrates a pronounced coherence peak at frequencies below 15 cm−1^{-1} (1.8 meV). The temperature dependence of the penetration depth, calculated from σ2\sigma_{2}, shows power-law behavior at the lowest temperatures. Analysis of the conductivity data with a two-gap model, gives the smaller isotropic s-wave gap of ΔA=3\Delta_{A} = 3 meV, while the larger gap is highly anisotropic with possible nodes and its rms amplitude is Δ0=8\Delta_{0} = 8 meV. Overall, our results are consistent with a two-band superconductor with an s±s_{\pm} gap symmetry.Comment: 6 pages, 4 figures, discussion on pair-barking scattering and possible lifting of the nodes is adde

    Polarization control of direct (non-sequential) two-photon double ionization of He

    Get PDF
    An ab initio parametrization of the doubly-differential cross section (DDCS) for two-photon double ionization (TPDI) from an s2 subshell of an atom in a 1S0-state is presented. Analysis of the elliptic dichroism (ED) effect in the DDCS for TPDI of He and its comparison with the same effect in the concurrent process of sequential double ionization shows their qualitative and quantitative differences, thus providing a means to control and to distinguish sequential and non-sequential processes by measuring the relative ED parameter

    Optical conductivity and penetration depth in MgB2

    Full text link
    The complex conductivity of a MgB2 film has been investigated in the frequency range 4 cm^{-1}< nu < 30 cm^{-1} and for temperatures 2.7 K < T <300 K. The overall temperature dependence of both components of the complex conductivity is reminiscent of BCS-type behavior, although a detailed analysis reveals a number of discrepancies. No characteristic feature of the isotropic BCS gap temperature evolution is observed in the conductivity spectra in the superconducting state. A peak in the temperature dependence of the real part of the conductivity is detected for frequencies below 9 cm^{-1}. The superconducting penetration depth follows a T^2 behavior at low temperatures.Comment: 4 pages, 4 figure

    Observation of non-local dielectric relaxation in glycerol

    Full text link
    Since its introduction, liquid viscosity and relaxation time Ï„\tau have been considered to be an intrinsic property of the system that is essentially local in nature and therefore independent of system size. We perform dielectric relaxation experiments in glycerol, and find that this is the case at high temperature only. At low temperature, Ï„\tau increases with system size and becomes non-local. We discuss the origin of this effect in a picture based on liquid elasticity length, the length over which local relaxation events in a liquid interact via induced elastic waves, and find good agreement between experiment and theory

    Optical conductivity of multifold fermions: the case of RhSi

    Full text link
    We measured the reflectivity of the multifold semimetal RhSi in a frequency range from 80 to 20000 cm−1^{-1} (10 meV - 2.5 eV) at temperatures down to 10 K. The optical conductivity, calculated from the reflectivity, is dominated by the free-carrier (Drude) contribution below 1000 cm−1^{-1} (120 meV) and by interband transitions at higher frequencies. The temperature-induced changes in the spectra are generally weak: only the Drude bands narrow upon cooling, with an unscreened plasma frequency that is constant with temperature at approximately 1.4 eV, in agreement with a weak temperature dependence of the free-carrier concentration determined by Hall measurements. The interband portion of conductivity exhibits two linear-in-frequency regions below 5000 cm−1^{-1} (∼\sim 600 meV), a broad flat maximum at around 6000 cm−1^{-1} (750 meV), and a further increase starting around 10000 cm−1^{-1} (∼\sim 1.2 eV). We assign the linear behavior of the interband conductivity to transitions between the linear bands near the band crossing points. Our findings are in accord with the predictions for the low-energy conductivity behavior in multifold semimetals and with earlier computations based on band structure calculations for RhSi.Comment: 7 pages, supplemental material added, figures improve
    • …
    corecore