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Polarization control of direct (non-sequential)  
two-photon double ionization of He 
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68588-0111, USA 

2 Department of Physics, Voronezh State University, Voronezh 394006, Russia 

Abstract 
An ab initio parametrization of the doubly-differential cross section (DDCS) for two-
photon double ionization (TPDI) from an s2 subshell of an atom in a 1S0-state is presented. 
Analysis of the elliptic dichroism (ED) effect in the DDCS for TPDI of He and its 
comparison with the same effect in the concurrent process of sequential double ionization 
shows their qualitative and quantitative differences, thus providing a means to control 
and to distinguish sequential and non-sequential processes by measuring the relative ED 
parameter. 

1. Introduction 

Recent advances in the production of intense VUV and soft x-ray radiation have stimulated 
investigations of many electron photoprocesses in atoms owing to the possibility of 
obtaining new insights into electron correlations. The helium atom, the prototypical three-
body Coulomb system, is the best candidate for such investigations. Over the past decade, 
electron correlations in single-photon double ionization of He by synchrotron radiation 
have been investigated in detail (see recent reviews [1] and references therein). At present, 
although the available intensities of VUV light sources are still in the perturbative regime 
(up to 1015 W cm−2), these intensities allow probes of processes involving more than one 
photon [2]. Thus, many theoretical works have focused on two-photon double ionization 
(TPDI) of helium (see, e.g., [3–21]): 

2γ + He → He2+ + e− + e− . (‘d’) 

This direct (‘d’), or non-sequential, two-electron process occurs simultaneously with 
sequential (‘s’) processes. For photon energies Eγ less than the ionization potential of the 
He+ ion (i.e., Eγ < 2 au), the ‘s’ process involves primarily the following two steps: 

γ + He → He+ + e− , 	 (‘s1’) 
2γ + He+ → He2+ + e− . 	 (‘s2’)
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While the ‘d’ process is of second-order in the light intensity, I, the third-order (in I ) 
‘s’ process is usually of comparable or greater magnitude for intensities that produce 
a measurable ionization yield, i.e., I of order 1014  W cm−2 [16]. We note that for the 
photon energies considered in this paper, there is another third-order sequential process 
that can lead to double ionization, but that, unlike the one we consider, involves electron 
correlation: specifically, two-photon single ionization of He with excitation of the residual 
ion to one of its excited states, He+(nl), followed by one-photon ionization of He+(nl). 
Owing to the necessity for electron correlation, the importance of this correlated third-order 
sequential process may be expected in general to be small compared to the uncorrelated 
sequential process we consider (cf figure 5 of [20]), although there may be particular 
photon frequencies at which it becomes significant.3 However, in this paper we ignore this 
correlated sequential process. 

Owing to the comparable or greater magnitude of the ‘s’ process as compared 
to the ‘d’ process, one of the challenges in investigating the double ionization process 
either experimentally or computationally (by numerical solution of the time-dependent 
Schrödinger equation) is that of separating the ‘d’ (or TPDI) and ‘s’ processes. However, 
there are ways to control the ‘s’ and ‘d’ processes. One of them is proposed in [16], where 
the authors suggest enhancing the relative contribution of the ‘d’ channel by using an 
appropriate photon energy (e.g., Eγ ~ 45 eV) at which the cross section for the ‘s2’ step of 
the ‘s’ process has a broad local minimum [16]. 

In this work, we analyze the light polarization dependence of double ionization 
cross sections in the perturbative regime and discuss how to control and distinguish 
between the ‘d’ and ‘s’ processes (even when they have comparable electron yields) by 
measuring the electron angular distributions for different light polarizations. For TPDI, it 
is most informative to measure the triply-differential cross section (TDCS), σ‘d’

(3)   ≡ d3σ‘d’/
(dE2dΩ1dΩ2), where dΩ1 and dΩ2 are the ejection (solid) angles of the two photoelectrons, 
while E2 is the energy of the second electron. An ab initio parametrization of the TDCS 
σ‘d’

(3)  
 has been obtained recently that is independent of the dynamical model describing 

electron correlations [22]. It shows that σ‘d’
(3)  

 exhibits a circular dichroism (CD) effect for 
the case of circularly polarized light (for both equal and non-equal energy sharing between 
the photoelectrons), whereas there is no CD effect for the ‘s’ process. The observation 
of CD, however, requires coincidence measurements of the angular distributions of the 
two ionized electrons. In this work, we study the experimentally more feasible doubly-
differential cross section (DDCS) for the ‘d’ process, analyze it both qualitatively and 
quantitatively (for He) and compare with the cross section for the ‘s2’ process. 

2. Ab initio parametrizations of DDCSs for the ‘d’ and ‘s’ processes 

2.1. Parametrization for the ‘d’ process 

The DDCS for TPDI of an atom by radiation having an electric field vector F(r,t) = F Re {e 
exp [i(k · r − ωt)]} (e · e* = 1) and a photon flux density |j | = cF 2/(8πħω ) (dσ = dW/ | j |2, 
where dW is the transition rate) is given in atomic units by 

(1) 

3 For example, for circular light polarization, the two-photon ionization cross section of He+(1s) has 
zeros at frequencies ω0

(n,n+1)  in each frequency interval between pairs of neighboring resonances with 
He+(np) and He+((n +1)p) excited states. Thus, the correlated sequential process will be dominant at 
ω ≈ω0 

(n,n+1). The lowest two values of ω0
(n,n+1)  are ω0

(2,3)  = 43.67 eV and ω0
(3,4)   = 49.25 eV. 
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where  = 8π3 p1p2/(c
2ω2),pi (i = 1, 2) are the photoelectron momenta and Ei = p

i
2/2. The 

amplitude A‘d’ for a two-photon transition from an initial s2(1S0)-state Φ0 to the two electron 
continuum state Ψ(–)

p1p2 involves the two-electron Green’s function G(E0 + ω), 

	 (2)

where (e · D) = e · (Ñr1+ Ñr2 ) is the electric dipole operator (in velocity form) of the 
electron–photon interaction. Note also that E1+ E2 = E0 + 2ω. 
Using expansions for Ψ(–)

p1p2 and G(E0 + ω) in bipolar harmonics Yl1l2
LM

(r̂1, r̂2) [23], the 
evaluation of the angular integrals in (2) using the Wigner–Eckart theorem yields 

	  (3)
 
where 
	 (4)
 
is the second-order two-electron reduced matrix element in which g1

s1s2 () is the projection 
of the two-electron Green function G() on the “intermediate” 1Po states of the electron pair 
(whose individual electron angular momenta are s1 and s2) and |L(l1l2)p1p2ñ is the L-wave 
component of the exact two-electron continuum state Ψ(–)

p1p2 
 (whose individual angular 

momenta are l1 and l2). Owing to parity conservation, s1 + s2 = odd, and l1 + l2 = even. 
Further simplification of the bipolar harmonics Yl1l2

LM
(p̂1,p̂2) in (3) (using the techniques 

developed in [24]) gives an ab initio parametrization for the TPDI amplitude A‘d’ in terms 
of four polarization-independent dynamical amplitudes [22]4. However, instead of using 
this invariant parametrization for A‘d’ to obtain an invariant parametrization for the DDCS, 
it is simpler to substitute into the definition (1) the expression (3)for A‘d’ and integrate over 
the angles of one of the electrons. As a result, we obtain 

(5)

where the dynamical factors B(‘d’)
LL′g depend only on the electron energies E1 and E2,

(6)

and satisfy the following symmetry relation: B(‘d’)
LL′g = [B(‘d’)

LL′g]*. Thus, the cross section 
σ(2)

‘d’  involves six real dynamical parameters, e.g., B(‘d’)
000 , Re B(‘d’)

202 , Im B(‘d’)
202, and 

B(‘d’)
22g with g = 0, 2, 4. The factors B(‘d’)

000 and B(‘d’)
22g determine the contributions to σ(2)

‘d’ 
originating respectively from ionization to the S-wave and D-wave channels of the two-
electron continuum, while Re B(‘d’)

202 and Im B(‘d’)
202 describe the interference between the 

S-wave and D-wave contributions. 
The spherical harmonic Y

gq
(p̂2) in (5) is the tensor product of g vectors p̂2 [23]. 

Thus, using techniques for the reduction of tensors constructed from several vectors [25], 
the tensor product of e, e*, and Y

gq
(p̂2) in (5) may be presented as a linear combination 

4 As shown in [22], the number of these amplitudes reduces to 3 for the cases of either equal energy sharing (p1 = 
p2) or circular light polarization (|ξ| ≡ |[e* × e]| = 1; see the following main text) and, further, to 2 for p1 = p2 and 
ξ = ±1. (This latter fact has also been found in [19].) 
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of scalar products of the vectors involved. As a result, we obtain the following general 
parametrization for the TPDI DDCS: 

σ(2)
‘d’

 = f0
(‘d’) + f1

(‘d’)|(e · p̂ 2)|
2 + f2

(‘d’)|(e · p̂ 2)|
4 

+ [f3 
(‘d’) + f4

(‘d’) Re(e · p̂ 2)
2 + f5

(‘d’)Im(e · p̂ 2)
2 ],     (7) 

where  is the degree of linear light polarization ( = (e · e), see below). The six polarization- 
invariant parameters fi

(‘d’)(p1,p2) depend only upon the photoelectron energies and can be 
expressed in terms of the dynamical factors B(‘d’)

LL′g as follows: 

(8) 

(9) 

(10) 

(11)

2.2. Parametrization for the ‘s’ process 

The ‘s1’ step of the ‘s’ process is described by its differential photoionization cross section, 
which is insensitive to the handedness of elliptically polarized light and has a well-known 
form in terms of the total cross section and an asymmetry parameter. As shown in [26], for 
the ‘s2’ process, i.e., single-electron two-photon ionization, the differential cross section, 
dσ/dΩ ≡ σ‘s2’, has the same six-parameter form as in (7) for the general case of non-zero 
angular momentum l of an initially-bound electron (because the same set of vectors (e, 
e*, and p̂ ) occurs in both problems). For ionization from an s-state (e.g., He+(1s)), σ‘s2’ 
simplifies, since for this case the amplitude A‘s2’ is a scalar that involves only two terms, 
which are proportional to (e · p̂ )2 and  (cf [26]), 

(12)

where 

(13) 

δl(p) is the Coulomb scattering phase and dl(p) ≡ áRpl ||Ñ1g1(E1s + ω)Ñ1||R1s ñ is the reduced 
matrix element for two-photon ionization in which g1(E1s + ω) is the radial part of the 
Coulomb Green’s function. The resulting expression for σ‘s2’, 

dσ/dΩ ≡ σ‘s2’ =  |A‘s2’|
2 ,    = p/(c2ω2),                                       (14) 

may be presented in a form similar to (5), 

(15) 

where the dynamical factors B have much simpler forms than those for the ‘d’ process: 

(16)
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Owing to the similarity between expressions (5) and (15), the invariant parametrization of 
σ‘s2’ also has the form (7) (substituting there p2 → p), except that f0

(‘s2’) and f1
(‘s2’) vanish. 

The explicit forms for the remaining invariant parameters, f2
(‘s2’) – f5

(‘s2’) , follow from 
(9)–(11) on making the replacement B(‘d’)

LL′g →B(‘s2’)
ll′g . Thus, the angular distribution for two-

photon ionization of He+(1s) is parametrized by four dynamical factors, fi
(‘s2’)(i = 2, ..., 5), 

independent of the light polarization and photoelectron ejection angle. Also, the differences 
in the ejected electron energies (which are fixed in the ‘s’ process, but are shared between 
the two electrons in the ‘d’ process) as well as in the physical mechanisms for electron 
ejection between the ‘s’ and ‘d’ processes ensure pronounced differences in the magnitudes 
of polarization effects in these processes, thus providing a means to control the ‘d’ process 
contribution. 

2.3. Alternative parametrization exhibiting the elliptic dichroism effect 

To separate explicitly the polarization and angular dependences in (7), whose form applies 
to both the ‘d’ and ‘s2’ cross sections, we parametrize the photon polarization vector as e = 
(̂  + iηζ̂  )/(1 + η2)½ (−1 ≤ η ≤ 1), where ζ̂  = [k̂ × ̂], and ̂  and k̂ indicate the directions of 
the major axis of the polarization ellipse and the photon wave vector k. The ellipticity η is 
related to the degrees of linear and circular polarization,  and ξ :  = (1 − η2)/(1 + η2) = (e · 
e), ξ = 2η/(1 + η2) = i(k̂ · [e* × e]); 0 ≤  ≤ 1, −1 ≤ ξ ≤ + 1,2 + ξ 2 = 1. With these definitions 
and parametrization (7), the cross sections σ‘d’

(2) and σ‘s2’ both have the following form 
(where, here and in (18)–(20), we omit any additional indices since these equations are 
valid for both the ‘d’ and ‘s2’ processes): 

σ = σ0 + ξσED,                                                          (17) 

where σ0 is invariant to e → e* (i.e., to a change in the sign of ξ ), while the term ξσED is 
dichroic (i.e., it changes sign when ξ → −ξ ). The dichroic term in (17) vanishes for purely 
circular polarization (ξ = ±1,  = 0) and describes the elliptic dichroism (ED) effect; it is 
maximal for  = |ξ| = 2–½. The general expressions for σ0 and σED in (17) havethe following 
forms (cf [26]): 

(18)

(19) 

where (θ, φ) are the spherical angles of the vector p in the reference frame {̂  , ζ̂ , k̂}.(Note 
that f0 and f1 in (18) vanish for the case of the ‘s2’ process for He+(1s).) 

Expressions (17)–(19) give an alternative parametrization to (7) for the DDCS in terms 
of real vectors.5 The ED term, σED, involves only the parameter f5, while σ0 involves all 
others. From the explicit forms (11) for f5 and (6) and (16) for B202 (= B*

022), one sees that 
the ED effect in both the ‘d’ and ‘s’ processes originates from the interference between real 
and imaginary parts of polarization-invariant components of the generally non-Hermitian 
transition amplitudes to the S-wave (L = 0, or l = 0) and D-wave (L = 2, or l = 2) continuum 
channels, in agreement with general arguments [27] on the origin of dichroic effects in 
photoprocesses involving unpolarized atoms. Another peculiarity of the ED term (19) is 
its linear dependence on sin φ (compared to the sin2 φ-dependence of the term σ0), which 
causes an asymmetry in the angular distributions for elliptically polarized light when φ 

5 An alternative representation for σ0 in (18) in terms of (̂ · p̂)2 and (ζ̂ · p̂)2 may be obtained using the 
identity: [k̂ × p̂]2 = (̂ · p̂)2 + (ζ̂  · p̂)2. 
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→ −φ. Finally, we note that σ(2)
‘d’ is described by a set of only three parameters for either 

linear or circular polarization (so that the angular distributions are axially symmetric about 
either ̂  or k, respectively). Thus, only the use of elliptically polarized light allows one 
to measure the entire set of six independent invariant parameters, fi

(‘d’), that completely 
describe the TPDI DDCS. 

3. Results for He 

3.1. Numerical method and measurement geometries 

The above parametrizations for the DDCSs (and, in particular, the ED contributions to the 
DDCSs) are exact and valid for any dynamical model describing electron correlations. 
In order to estimate the magnitude of the ED effect in TPDI of He, we describe electron 
correlations using the approach of [22], i.e., the lowest-order perturbation theory (LOPT) 
in the interelectron interaction 1/r12. Moreover, we consider only those two contributions 
associated with the knock-out mechanism in which both photons are absorbed by the same 
electron (see Figure 1). As shown in [28], the knock-out mechanism is the dominant one in 
single-photon double ionization for excess energies of the order of tens of eV. Also, more 
accurate numerical analyses [18, 20] exhibit the dominant role of final state correlations in 
TPDI. Consistent with those results, our calculations indicate that the “intermediate state 
correlation” diagram in Figure 1(b) gives a negligible contribution compared to that of 
the final state correlation diagram in Figure 1(a). Besides the diagrams shown in Figure 
1, there are also three LOPT diagrams that correspond to absorption of a single photon by 
each of the two electrons. As discussed in [22] for one of the photon energies considered 
in this paper (~45 eV) and non-equal energy sharing between the photoelectrons, the 
contributions of these diagrams are largest in a narrow interval of nearly equal escape 
angles of the two electrons, but outside this region of small mutual angles are as much as 
two to three orders of magnitude smaller. In addition, one of these diagrams (corresponding 
to final state correlation) becomes divergent as 1/ |E1 −E2| in the vicinity of equal energy 
sharing (E1 = E2), while the two other diagrams are finite and their contribution is small 
(compared to that of the final state knock-out diagram) for any energy sharing and any 
mutual angle. Thus, in order to obtain correct results it is necessary to include high-order 
effects in 1/r12 and/or carry out a renormalization of the singular diagram to compensate 
the formal divergence of the LOPT result for this diagram. Owing to these difficulties with 
this latter diagram, we estimate the magnitudes of the analytically predicted effects in this 
paper based on the knock-out diagrams in Figure 1, which give magnitudes of the total 
TPDI cross sections comparable to those predicted by the R matrix approach [11]. 

Figure 1. Schematic diagrams for knock-out contributions to the TPDI transition 
amplitude with both photons absorbed by one electron. Solid dots indicate 
summations over intermediate states. Diagrams with interchanged p1 and p2 must 
also be included. 
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To calculate matrix elements for two-photon ionization of He+(1s), we use the 
generalized Sturmian expansion of the Coulomb Green’s function [29], which allows an 
analytic evaluation of the matrix element dl(p) in (13) in terms of a convergent series. 
Thus, our results for σ‘s2’ and the ED effect for the ‘s’ process are exact. 

In Figures 2(a) and (b), we present two geometries in which the ED effect is maximal. 
These involve respectively measurements in the plane orthogonal to the wave vector k (a) 
and in the plane involving the vector k located at an angle of 45° with respect to the major 
and minor axes of the polarization ellipse (b). To describe the ED effect, we define the 
relative ED parameter, 

(20)

Since the φ and θ dependences of δED in the intervals (0, 180°) and (180°, 360°) are the 
same, we only present results for the interval (0, 180°). Also in Figures 3, 5, and 6, we 
present the cross section for the ‘d’ process integrated over the electron energies, 

(21) 

since for this case there is no need to detect the electron energy and we expect that this type 
of measurement may be the most feasible experimentally. 

3.2. Results for Eγ = 45 eV 

In Figures 3(a) and (b), we present results for the geometry in Figure 2(a) for a photon 
energy Eγ = 45 eV, which corresponds to the 29th harmonic of a Ti:sapphire laser (λ = 800 
nm). One sees that the DDCS of TPDI (cf Figure 3(a)) exhibits a pronounced ED effect. 
The relative ED parameter (cf Figure 3(a)) approaches its maximum magnitude at φ = 52° 

and 128°, ξ =  2–½, where |δED
‘d’| = 12.2%. The zeros of δED

  at φ = πn (n = 0, 1, 2) have a 
geometrical origin, as may be verified from expression (19) for σED. For the ‘s2’ process (cf 
Figures 3(b) and (b)), the positions of the zeros of δED

  are the same, but the behavior of δED
  

near the maxima is quite different. The maxima have almost the same positions as in Figure 
3(a′), φ = 53° and 127°, but the maximum value |δED| = 100% is approached at ξ = 0.38. The 
dichroic effect is huge because σ0

‘s2’ has a minimum for these angles and ξ, so that the term 
|ξσED| becomes almost equal to σ0. For these cases (i.e., φ = 53°, ξ = 0.38, and φ = 127°, ξ 
= −0.38), the ‘s2’ process is suppressed by three orders of magnitude. 

Figure 2. Two measurement geometries in which the ED effect is maximal in the ‘d’- 
and ‘s’-channels for double ionization of He: (a) θ = 90° is fixed, φ is varied; (b) φ = 
45° is fixed, θ is varied. 
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In general, even if the ED effect is significant in only one of the ‘s’ or ‘d’ processes, it is 
possible to distinguish these processes experimentally from information on the magnitudes 
of δ

ed
‘s2’ and δ

ed
‘d’. Note first that δ

ed
‘s’ = δ

ed
‘s2’, since there are no dichroic effects in the ‘s1’ 

step of the ‘s’ process. Furthermore, the total (measured) relative ED parameter for double 
ionization, which involves both the ‘s’ and ‘d’ processes, may be expressed as δ

ed
‘s’+‘d’ = 

(1−x) δ
ed
‘s’ + x δ

ed
‘d’,  where x ≡ (σ‘d’(ξ) + σ‘d’(−ξ)) /(σ‘s’+‘d’(ξ ) + σ‘s’+‘d’(−ξ)) is the relative 

contribution of the ‘d’ process. An experimental measurement of δ
ed
‘s2’+‘d’ at particular 

values of φ and ξ combined with our predicted values of δ
ed
‘s’ and δ

ed
‘d’ from Figures 3(b′) and 

(a′) allows a determination of the value of x, the fraction of measured electrons produced 
through the ‘d’-channel (with (1 − x) produced through the ‘s’-channel). Of course, if the 
ED effect is small in both the ‘s’ and ‘d’ processes, then it may be difficult to measure 
δ

ed
‘s’+‘d’, which will also be small. 

In Figures 3(c), (c′) and (d), (d′) for the geometry in Figure 2(b), one sees even 
more distinctive features in the cross sections and relative ED parameters for ‘d’ and ‘s2’ 
processes. For the ‘d’ process, δ

ed
 has a maximum at θ = 90° for any ξ . (The absolute 

maximum is  | δ
ed

 | = 11.5% at ξ = 2–½). For the ‘s2’ process, however, the positions of the 
maxima depend on ξ .For ξ = 0.88, the maximum is at θ = 38°, 142°; for ξ = 2–½ = 0.71 at 
θ = 49°, 131°; for ξ = 0.38 at θ = 60°, 120° and for ξ = 0.20 at θ = 63°, 117°. Note that δ

ed
‘s’ 

= −92.2% and δ
ed
‘d’ = 9.2% for θ = 49°,ξ = 2–½. 

In Figure 4, we present the DDCS σ‘d’
(2) for two fixed energy sharings between the 

electrons: (5.5 + 5.5) eV and (9.9 + 1.1) eV.  The results for equal energy sharing are similar 
to those for the energy-integrated DDCS σ‘d’

(1) in Figure 3. For both geometries in Figure 
2, the ED effect is more pronounced for unequal energy sharing: the maximum of |δ

ed
| is 

18.5% for this case, while |δ
ed

|max = 5.9% for equal sharing. 

3.3. Results for Eγ = 41.8 eV and 48 eV 

In Figures 5 and 6, the cross sections σ‘d’
(1)  and σ‘s2’ for the ‘d’ and ‘s2’ processes are 

shown for photon energies Eγ = 41.8 eV and 48 eV, which correspond to the 27th and 31st 

Figure 3. Cross sections σ and relative ED parameters δED for the ‘d’-channel ((a), 
(a′) and (c), (c′)) and the ‘s2’-channel ((b), (b′) and (d), (d′)) of double ionization 
of He by photons of energy Eγ = 45 eV for the geometries in Figure 2(a) ((a), (a′) 
and (b), (b′)) and Figure 2(b) ((c), (c′) and (d), (d′)). In Figures (a), (b) and (c), (d): 
black thin solid and dashed lines stand for ξ = 2–½ and  ξ = −2–½; blue thick solid 
and dashed lines stand for ξ = 0.38 and ξ = −0.38. In Figures (a′), (b′), and (c′), (d′): 
black dot-dashed lines stand for ξ = 0.88; solid black lines stand for ξ = 2–½; dashed 
blue lines stand for ξ = 0.38; dotted red lines stand for ξ = 0.20. 
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harmonics of a Ti:sapphire laser (λ = 800 nm). Compared to the case of Eγ = 45 eV, σ‘s2’ is 
more than an order of magnitude larger for Eγ = 41.8 eV and 48 eV, so that Eγ = 45 eV is 
indeed preferable for observations of the ‘d’ process, in agreement with the results in [16]. 
Another distinct feature of the ‘s2’ process is that the sign of the relative ED parameter δ

ed
‘s’ 

at 41.8 eV and 48 eV differs from that for 45 eV. Concerning the ‘d’ process, one sees that 
the ED effect for this process is more pronounced at higher Eγ . 

4. Summary and discussion 

In this paper, we have provided exact parametrizations of the DDCS for TPDI from an s2 

subshell of an atom in a 1S0-state. We have also given a similar, exact parametrization of 
the cross section for the dominant sequential ionization process, which requires at least 
three photons for photon energies below the ionization threshold of the ground state of the 

Figure 4. DDCS σ‘d’
(2)  and the relative ED parameter for TPDI of He by a 45 eV 

photon for energy sharings (9.9 + 1.1) eV ((a), (a′) and (c), (c′)) and (5.5 + 5.5) eV 
((b), (b′) and (d), (d′)) for the geometries in Figure 2(a) ((a), (a′), (b), (b′)) and in 
Figure 2(b) ((c), (c′), (d), (d′)). Solid lines: ξ = 2–½; dashed lines: ξ = −2–½. 

Figure 5. Same as Figure 3, but for the photon energy Eγ = 41.8 eV.
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singly-ionized atom. Furthermore, we have provided in addition exact parametrizations of 
the dichroism effects that may be observed in the cross section by either the direct or the 
sequential process. For the two measurement geometries (cf Figures 2(a) and (b)) for which 
these dichroic effects are predicted to be maximal, we have estimated their magnitudes for 
the case of He for three different photon energies. 

Our numerical estimates for He show that the ‘d’ and ‘s’ processes give very different 
elliptic dichroism results. In particular, as shown in Figure 3, the relative ED parameters for 
the ‘d’ and ‘s’ processes have opposite signs for the parameters considered. Furthermore, 
for a photon energy of 45 eV and the measurement geometry in Figure 2(a), the maximal 
values of the dichroism parameter resulting from the ‘s’ process occur for electron ejection 
angles at which the cross section for the ‘s’ process decreases by three orders of magnitude, 
whereas there is no such drop in the value of the cross section at these same ejection angles 
for the ‘d’ process. Thus, this photon energy and this measurement geometry appear to be 
optimal for distinguishing the dichroic effects of the ‘d’ process from those resulting from 
the ‘s’ process. 

In general, in order for experiment to distinguish the ‘d’ and ‘s’ processes, a coincidence 
measurement of the two electron energies must be made, from which comparison with 
our parametrization and estimates for the TDCS [22] can be made. In cases in which 
the coincidence energy measurements are not possible, measurements of the dichroic 
effects predicted in this paper for the DDCS can be made. In this case, both the ‘d’ and 
‘s’ processes will contribute to the measurement (or to the result of a direct solution of 
the time-dependent Schrödinger equation). In this case, we have sketched in section 3.2 
how experimental measurements of the ED parameter for the case in which both the ‘d’ 
and ‘s’ processes contribute to the measurement together with theoretical predictions 
for the separate ED parameters for the ‘d’ and ‘s’ processes may be used to predict the 
relative contribution of the ‘d’ process to the double ionization yield. We note that since 
the relative ED parameters involve the ratios of cross sections, results of calculations of 
these parameters may be expected to be less sensitive to the theoretical models used than 
the cross sections themselves. 

As shown in this paper (cf (17) and (19)), the predicted dichroic effects in the DDCS 
depend upon a single, polarization-independent parameter f5. Moreover, this parameter is 
sensitive to interference between S and D channels of the two-photon double ionization 
process (cf (11)). It thus provides a very sensitive test of the accuracy of theoretical models. 
We note that its value for the ‘d’ process alone may be determined by experiments that 
measure this parameter in the presence of both the ‘d’ and ‘s’ processes. The reason is that 

Figure 6. Same as Figure 3, but for the photon energy Eγ = 48 eV. 
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f5 may be calculated exactly for the ‘s’ process since it originates only from the ‘s2’ process 
for a hydrogen-like system. For the three photon energies considered in this paper (i.e., 
41.8 eV, 45 eV, and 48 eV), f5 

(‘s2’) takes the values −0.7424 × 10−52, 0.2708 × 10−53, and 
−0.2930 × 10−52 cm4 s, respectively. Thus, if an experiment measures f5 

(‘d’+‘s2’), then f5 
(‘d’) 

= f5
(‘d’+‘s2’) − f5

(‘s2’). 
Finally, we note that the magnitudes of σ‘d’

(1)
 at 45 eV and 48 eV are almost equal and 

slightly larger than at 41.8 eV, in qualitative agreement with the behavior of the TPDI total 
cross section σ‘d’

(0)
 (ω) found in [18, 20, 21] for the case of linear polarization. For elliptical 

polarization, our general parametrization of the total cross section is 

(22) 

where the factors B̃LL0
(‘d’), 

 

determine the TPDI partial cross sections corresponding to the S-wave (L = 0) and /D-wave 
(L = 2) continuum channels. (In particular, for ω = 41.8, 45, and 48 eV, the ratio B̃000

(‘d’) 

/B̃220
(‘d’) is 0.82, 0.73, and 0.69, respectively.) For the case of linear polarization and ω = 41.8 

eV, our result for σ‘d’
(0) is 1.9 × 10−53 cm4 s, which is close to the R matrix result [11], about 

three times less than the recent results of [21] and about an order of magnitude less than the 
recent results of [18]. (Note also our results σ‘d’

(0)
 = 2.5 × 10−53 and 2.4 × 10−53 cm4 s for ω = 

45 and 48 eV, respectively.) Thus, in using our numerical results for σ‘d’
(1)  and σ‘d’

(2)  in Figures 
3–6 to estimate whether experimental measurements are feasible, it may be reasonable 
to scale our estimates upward by up to an order of magnitude. We emphasize, however, 
that our general parametrizations (7), (17)–(19) for the TPDI DDCS are independent of 
any particular dynamical model. Thus, more accurate numerical calculations of the matrix 
elements dl

s
1
1
l
s
2
2
(L) in (6) and hence the parameters fi

(‘d’) in (8)–(11) may be employed in this 
parametrization to obtain the absolute magnitudes of the TPDI cross sections. We reiterate, 
however, that the relative magnitudes of the ED effects predicted here may be expected to 
be much less sensitive to the numerical approach employed. 
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