677 research outputs found

    Experimental evidence of a fractal dissipative regime in high-T_c superconductors

    Full text link
    We report on our experimental evidence of a substantial geometrical ingredient characterizing the problem of incipient dissipation in high-T_c superconductors(HTS): high-resolution studies of differential resistance-current characteristics in absence of magnetic field enabled us to identify and quantify the fractal dissipative regime inside which the actual current-carrying medium is an object of fractal geometry. The discovery of a fractal regime proves the reality and consistency of critical-phenomena scenario as a model for dissipation in inhomogeneous and disordered HTS, gives the experimentally-based value of the relevant finite-size scaling exponent and offers some interesting new guidelines to the problem of pairing mechanisms in HTS.Comment: 5 pages, 3 figures, RevTex; Accepted for publication in Physical Review B; (figures enlarged

    Axial gravity: a non-perturbative approach to split anomalies

    Full text link
    In a theory of a Dirac fermion field coupled to a metric-axial-tensor (MAT) background, using a Schwinger-DeWitt heat kernel technique, we compute non-perturbatively the two (odd parity) trace anomalies. A suitable collapsing limit of this model corresponds to a theory of chiral fermions coupled to (ordinary) gravity. Taking this limit on the two computed trace anomalies we verify that they tend to the same expression, which coincides with the already found odd parity trace anomaly, with the identical coefficient. This confirms our previous results on this issue.Comment: 43 pages, some additions in section 6.3 and 6.5 plus minor correction

    Axial gravity, massless fermions and trace anomalies

    Get PDF
    This article deals with two main topics. One is odd parity trace anomalies in Weyl fermion theories in a 4d curved background, the second is the introduction of axial gravity. The motivation for reconsidering the former is to clarify the theoretical background underlying the approach and complete the calculation of the anomaly. The reference is in particular to the difference between Weyl and massless Majorana fermions and to the possible contributions from tadpole and seagull terms in the Feynman diagram approach. A first, basic, result of this paper is that a more thorough treatment, taking account of such additional terms { and using dimensional regularization}, confirms the earlier result. The introduction of an axial symmetric tensor besides the usual gravitational metric is instrumental to a different derivation of the same result using Dirac fermions, which are coupled not only to the usual metric but also to the additional axial tensor. The action of Majorana and Weyl fermions can be obtained in two different limits of such a general configuration. The results obtained in this way confirm the previously obtained ones.Comment: 55 pages, comments added in section 2 and 5. Sections 6.4, 6.6, 7, 7.1, 7.2 and Appendices 5.3, 5.5 partially modifie

    Perturbative spectrum of the dressed sliver

    Get PDF
    We analyze the fluctuations of the dressed sliver solution found in a previous paper, hep-th/0311198, in the operator formulation of Vacuum String Field Theory. We derive the tachyon wave function and then analyze the higher level fluctuations. We show that the dressing is responsible for implementing the transversality condition on the massless vector. In order to consistently deal with the singular k = 0 mode we introduce a string midpoint regulator and we show that it is possible to accommodate all the open string states among the solutions to the linearized equations of motion. We finally show how the dressing can give rise to the correct ratio between the energy density of the dressed sliver and the brane tension computed via the three-tachyons-coupling

    Gravitational Chern-Simons Lagrangians and black hole entropy

    Get PDF
    We analyze the problem of defining the black hole entropy when Chern-Simons terms are present in the action. Extending previous works, we define a general procedure, valid in any odd dimensions both for purely gravitational CS terms and for mixed gauge-gravitational ones. The final formula is very similar to Wald's original formula valid for covariant actions, with a significant modification. Notwithstanding an apparent violation of covariance we argue that the entropy formula is indeed covariant.Comment: 39 page

    alpha'-exact entropies for BPS and non-BPS extremal dyonic black holes in heterotic string theory from ten-dimensional supersymmetry

    Full text link
    We calculate near-horizon solutions for four-dimensional 4-charge and five-dimensional 3-charge black holes in heterotic string theory from the part of the ten-dimensional tree-level effective action which is connected to gravitational Chern-Simons term by supersymmetry. We obtain that the entropies of large black holes exactly match the alpha'-exact statistical entropies obtained from microstate counting (D=4) and AdS/CFT correspondence (D=5). Especially interesting is that we obtain agreement for both BPS and non-BPS black holes, contrary to the case of R^2-truncated (four-derivative) actions (D-dimensional N=2 off-shell supersymmetric or Gauss-Bonnet) were used, which give the entropies agreeing (at best) just for BPS black holes. The key property of the solutions, which enabled us to tackle the action containing infinite number of terms, is vanishing of the Riemann tensor \bar{R}_{MNPQ} obtained from torsional connection defined with \bar{\Gamma} = \Gamma - H/2. Morover, if every monomial of the remaining part of the effective action would contain at least two Riemanns \bar{R}_{MNPQ}, it would trivially follow that our solutions are exact solutions of the full heterotic effective action in D=10. The above conjecture, which appeared (in this or stronger form) from time to time in the literature, has controversial status, but is supported by the most recent calculations of Richards (arXiv:0807.3453 [hep-th]). Agreement of our results for the entropies with the microscopic ones supports the conjecture. As for small black holes, our solutions in D=5 still have singular horizons.Comment: 28 pages; v2: minor changes, references added; v3: extended discussion on small black holes in sec. 5.4, more references added, accepted in JHE

    Massive fermion model in 3d and higher spin currents

    Get PDF
    We analyze the 3d free massive fermion theory coupled to external sources. The presence of a mass explicitly breaks parity invariance. We calculate two- and three-point functions of a gauge current and the energy momentum tensor and, for instance, obtain the well-known result that in the IR limit (but also in the UV one) we reconstruct the relevant CS action. We then couple the model to higher spin currents and explicitly work out the spin 3 case. In the UV limit we obtain an effective action which was proposed many years ago as a possible generalization of spin 3 CS action. In the IR limit we derive a different higher spin action. This analysis can evidently be generalized to higher spins. We also discuss the conservation and properties of the correlators we obtain in the intermediate steps of our derivation
    corecore