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Abstract This article deals with two main topics. One is
odd parity trace anomalies in Weyl fermion theories in a 4d
curved background, the second is the introduction of axial
gravity. The motivation for reconsidering the former is to
clarify the theoretical background underlying the approach
and complete the calculation of the anomaly. The reference
is in particular to the difference between Weyl and massless
Majorana fermions and to the possible contributions from
tadpole and seagull terms in the Feynman diagram approach.
A first, basic, result of this paper is that a more thorough
treatment, taking account of such additional terms and using
dimensional regularization, confirms the earlier result. The
introduction of an axial symmetric tensor besides the usual
gravitational metric is instrumental to a different derivation of
the same result using Dirac fermions, which are coupled not
only to the usual metric but also to the additional axial tensor.
The action of Majorana and Weyl fermions can be obtained
in two different limits of such a general configuration. The
results obtained in this way confirm the previously obtained
ones.

1 Introduction

This article deals with two main topics. One is odd parity
trace anomalies in chiral fermion theories in a 4d curved
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background, the second is the introduction of axial gravity.
The first subject has been already treated in [1,2]. The sec-
ond, to our best knowledge, is new. The motivation for recon-
sidering the former is to clarify the theoretical background
underlying the approach and complete the calculation of the
anomaly, also in view of more recent results, [3]. For some
aspects of the calculations in [1,2] were left implicit. We
refer to the possible contributions from tadpole and seagull
terms in the Feynman diagram approach used there. Here we
treat them explicitly. In this paper we use dimensional regu-
larization, deferring to another paper the discussion of other
regularizations. A first, basic, result of this paper is that a
more thorough treatment, taking account of such additional
terms, confirms the result of [1].

The second topic is motivated as follows. It is well known
that in anomaly calculations the functional integral measure
plays a basic role. In the case of chiral fermions the definition
of such a measure is a long-standing and unsolved problem.
One can bypass it by using Feynman diagram techniques,
where the fermion path integral measure does not play a
direct role. However, there is a way to carry out the same cal-
culation on a theory of Dirac fermions, so that no fastidious
objections can be raised about the fermion functional integral
measure. Here is where the axial metric intervenes. The idea
is to follow the method used in [4] for chiral gauge anomalies.
It is possible to compute covariant and consistent anomalies
in a unique model by coupling Dirac fermions also to an
axial potential A, beside the familiar vector potential V . The
anomalies one obtains in this way satisfy the Wess–Zumino
consistency conditions, but depend on two potentials. The
covariant anomaly for Dirac fermions coupled to V alone are
obtained by simply setting A = 0. The consistent anomaly of
chiral fermions coupled to V are obtained by taking the limit
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V → V/2, A → V/2. Transposing this technique to the
problem of trace anomalies for chiral fermions, requires the
introduction of an axial tensor fμν , which with some abuse
of language we call metric too, besides the usual metric gμν .
This second tensor is called axial because it couples axially
to Dirac fermions. The second important result of our paper
is that we succeed in introducing this bimetric system, and
through it we are able to derive the trace anomalies for Dirac,
Majorana and Weyl fermions as particular cases of the gen-
eral case. Using again dimensional regularization, we obtain
in this way a confirmation of the previous, together with new,
results. We suggest also an explanation for the claimed dis-
agreement with Ref. [3].

The calculations presented here have a more general moti-
vation, stemming from a more basic question concerning
massless fermions. More precisely the question we would
like to be able to answer is: is there at present a consistent
field theory of massless fermions in a curved background? A
massless Dirac fermion is not a good candidate in this sense,
because it admits a mass term that can arise from renormal-
ization, even if it is not initially present in the action. So
the choice must be restricted to Weyl and Majorana. Also
a Majorana fermion can have mass, but if its bare mass is
zero, a (rigid) chiral symmetry could in principle protect this
vanishing mass. However, this symmetry is anomalous on
a curved background, due to the Kimura–Delbourgo–Salam
anomaly, [5–7]. A Weyl fermion is certainly massless and no
bare mass term exists that can threaten this property. The odd
parity trace anomaly found in [1] is a new and perhaps useful
aspect [8] as long as we consider the theory an effective one.
However, unitarity of the theory might be imperiled in a fully
quantized gravity theory interacting with chiral fermions. As
pointed out in [1] this may have important implications for the
existence of massless neutrinos, unless some innovative the-
ory is introduced in order to describe truly massless fermions
on a curved background.

Given the importance of this theme, we intend to return to
the analysis of the odd parity trace anomaly in the presence
of a gravitational background by means of other methods
and other regularizations, which we believe will confirm the
results obtained with the dimensional regularization.

The paper is organized as follows. In Sect. 2 we review
the properties of massless Weyl and Majorana fermions in
4d. In Sect. 3 the anomaly derivation of [1] is reviewed
and integrated with the calculation of the relevant tadpoles
and seagull terms. In Sect. 4 such a revisiting is completed
with the evaluation of the Ward identity for diffeomorphisms.
Section 5 contains an additional discussion of the odd trace
anomaly. In Sect. 6 we introduce the formalism for a MAT
(metric-axial-tensor) gravity, and in Sect. 7 we couple it to
Dirac fermions. Then we present a simplified derivation of
the trace anomalies in such a model, and then we compute
in detail the collapsing limit, which allows us to calculate

the trace anomalies in an ordinary gravity background for
Dirac, Weyl and Majorana fermions. Section 8 is devoted to
a justification of the simplifications of the previous section.
Section 9 is the conclusion. The evaluation of the triangle
diagram for odd trace anomaly is shown in Appendix A. The
derivation of Feynman rules in an ordinary gravity and MAT
background, together with the relevant Ward identities are
collected in Appendix B. The most encumbering diagram
calculations can be found in Appendix C.

Notation We use a metric gμν with mostly – signature. The
gamma matrices satisfy {γ μ, γ ν} = 2gμν and

γ †
μ = γ0γμγ0

The generators of the Lorentz group are �μν = 1
4 [γμ, γν].

The charge conjugation operator C is defined to satisfy

γ T
μ = −C−1γμC, CC∗ = −1, CC† = 1 (1)

The chiral matrix γ5 = iγ 0γ 1γ 2γ 3 has the properties

γ
†
5 = γ5, (γ5)

2 = 1, C−1γ5C = γ T
5

2 Dirac, Majorana and Weyl fermions in 4d

We would like to devote this section to a discussion of the
statement that a massless Majorana fermion is the same as
a Weyl fermion. The reason is that, if it is true at both clas-
sical and quantum level, there is no chance for an odd par-
ity trace anomaly to exist and no motivation for this paper.
On the other hand this statement is not undisputed. As one
can easily experience, there is no well-defined or generally
accepted doctrine about the properties of the quantum theo-
ries of massless Majorana and Weyl fermions. Our aim here
is to examine various aspects of the problem and bring to
light all the classical and quantum differences between the
two types of fermions. We would like to convince the reader
that there is no a priori uncontroversial evidence that the
statement is true, and therefore it is prudent to leave the last
word to explicit computations, such as the one for odd parity
trace anomaly.

We start from a few basic facts about fermions in 4d. Let us
start from a four-component Dirac fermion ψ . Under Lorentz
it transforms as

ψ(x) → ψ ′(x ′) = exp

[
−1

2
λμν�μν

]
ψ(x), (2)

for x ′μ = (eλ)μν xν , where �μν = 1
4 [γμ, γν]. The

Lagrangian for a free Dirac field is well known:

iψ̄γ μ∂μψ. (3)

What is often forgotten is that, like for the kinetic term of any
field theory, it can be constructed because, in the spinor space,
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there exists a Lorentz invariant scalar product (�1, �2) =
〈�†

1 |γ 0|�2〉. So that (3) can also be written as

i(ψ, γ ·∂ψ). (4)

A Dirac fermion admits a Lorentz invariant mass term
mψ̄ψ = m(ψ,ψ).

A Dirac fermion can be seen as the sum of two Weyl
fermions

ψL = PLψ, ψR = PRψ, where PL = 1 + γ5

2
,

PR = 1 − γ5

2

with opposite chiralities

γ5ψL = ψL , γ5ψR = −ψR .

A left-handed Weyl fermion admits a Lagrangian kinetic term

i(ψL , γ ·∂ψL) = iψ Lγ μ∂μψL (5)

but not a mass term, because (ψL , ψL) = 0, since γ5γ
0 +

γ 0γ5 = 0. So a Weyl fermion is massless and this property
is protected by its being chiral.

In order to introduce Majorana fermions we need the
notion of Lorentz covariant conjugate spinor, ψ̂ :

ψ̂ = γ0Cψ∗. (6)

It is not hard to show that if ψ transforms like (2), then

ψ̂(x) → ψ̂ ′(x ′) = exp

[
−1

2
λμν�μν

]
ψ̂(x). (7)

Therefore it makes sense to impose on ψ the condition

ψ = ψ̂ (8)

because both sides transform in the same way. A spinor sat-
isfying (8) is, by definition, a Majorana spinor.

A Majorana spinor admits both kinetic and mass term,
which can be written as 1

2× those of a Dirac spinor.
In terms of Lorentz group representations we can summa-

rize the situation as follows. γ5 commutes with Lorentz trans-
formations exp

[− 1
2λμν�μν

]
. So do PL and PR . This means

that the Dirac representation is reducible and multiplying the
spinors by PL and PR identifies irreducible representations,
the Weyl ones. To be more precise, the Weyl representations
are irreducible representations of the group SL(2, C), which
is the covering group of the proper ortochronous Lorentz
group. They are usually denoted ( 1

2 , 0) and (0, 1
2 ) in the

SU (2)× SU (2) labeling of the SL(2, C) irreps. As we have
seen in (7), Lorentz transformations commute also with the
charge conjugation operation

CψC−1 = ηCγ0Cψ∗ (9)

where ηC is a phase which, for simplicity, we set equal to
1. This also says that Dirac spinors are reducible and sug-
gests another way to reduce them: by imposing (8) we single
out another irreducible representation, the Majorana one. The
Majorana representation is the minimal irreducible represen-
tation of a (one out of eight) covering of the complete Lorentz
group, [9,10]. It is evident, and well known, that Majorana
and Weyl representations are incompatible (in 4d).1

Let us recall the properties of a Weyl fermion under charge
conjugation and parity. We have

CψLC
−1 = PLCψC−1 = PL ψ̂ = ψ̂L . (10)

The charge conjugate of a Majorana field is itself, by defini-
tion. While the action of a Majorana field is invariant under
charge conjugation, the action of a Weyl fermion is, so to say,
maximally non-invariant, for

C

(∫
iψLγ μ∂μψL

)
C−1 =

∫
iψ̂Lγ μ†∂μψ̂L

=
∫

iψRγ μ∂μψR . (11)

The parity operation is defined by

PψL(t,
→
x )P−1 = ηPγ0ψR(t,− →

x ) (12)

where ηP is a phase. In terms of the action we have

P

(∫
ψ Lγ μ∂μψL

)
P−1 =

∫
ψ Rγ μ∂μψR, (13)

while for a Majorana fermion the action is invariant under
parity.

If we consider CP, the action of a Majorana fermion is
obviously invariant under it. For a Weyl fermion we have

CPψL(t,
→
x )(CP)−1 = γ0ψ̂L(t,− →

x ) = γ0 PRψ̂(t,− →
x )

= γ0ψ̂R(t,− →
x ) (14)

Applying CP to the Weyl action one gets

CP

(∫
iψLγ μ∂μψL

)
(CP)−1

=
∫

iψ̂R(t,− →
x )γ μ†∂μψ̂R(t,− →

x )

=
∫

iψ̂R(t,
→
x )γ μ∂μψ̂R(t,

→
x ). (15)

But one can easily prove that∫
iψ̂R(t,

→
x )γ μ∂μψ̂R(t,

→
x ) =

∫
iψL(x)γ μ∂μψL(x).

(16)

1 One can express the components of Majorana fermion as linear com-
binations of those of a Weyl fermion and vice versa; see for instance
[11]. However, this does not respect the irrep decomposition.
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Therefore the action for a Weyl fermion is CP invariant. It is
also, separately, T invariant, and, so, CPT invariant.

Now let us go to the quantum interpretation of the field
ψL . It has the plane wave expansion

ψL(x) =
∫

d p
(

a(p)uL(p)e−i px + b†(p)vL(p)eipx
)

(17)

where uL , vL are fixed and independent left-handed spinors
(there are only two of them). The interpretation is: b†(p)

creates a left-handed particle while a(p) destroys a left-
handed particle with negative helicity (because of the oppo-
site momentum). However, Eqs. (14) and (15) force us to
identify the latter with a right-handed antiparticle: C maps
particles to antiparticles, while P invert helicities, so CP maps
left-handed particles to right-handed antiparticles. It goes
without saying that no right-handed particles or left-handed
antiparticles enter the game.

Remark A mass term ψ̄ψ for a Dirac spinor can also be
rewritten by projecting the latter into its chiral components

ψ̄ψ = ψLψR + ψRψL . (18)

If ψ is a Majorana spinor this can be written

ψ̄ψ̂ = ψ̂LψR + ψRψ̂L , (19)

which is therefore well defined and Lorentz invariant by con-
struction. Now, using the Lorentz covariant conjugate we can
rewrite (19) as

(ψL)T C−1ψL + ψ
†
LC(ψL)∗, (20)

which is expressed only in terms of ψL . Equation (20) may
create the illusion that there exists a mass term also for Weyl
fermions. But this is not the case. If we add this term to
the kinetic term (5) we obtain an action whose equations of

motion have mCψL
T

as the mass term. These involve both
chiralities as a consequence of the self-adjointness of (20).
This implies that there does not exist such a thing as a “mas-
sive Weyl propagator”, i.e. a massive propagator involving
only one chirality, which, in particular, renders the use of
the Pauli–Villars regularization problematic.2 Another pos-
sibility could be to write down a massive Dirac equation of
motion for a Weyl fermion,

iγ μ∂μψL − mψL = 0, (21)

but this equation breaks Lorentz covariance because the first
piece transforms according to a right-handed representation
while the second according to a left-handed one, and is not

2 Sometimes a Dirac or Majorana propagator is used in its place. A min-
imal precaution, in such a case, would be to check the results obtained
with this regularization by comparing them with those obtained with
others.

Lagrangian. The reason is, of course, that (20) is not express-
ible in the same canonical form as (5). This structure is clearly
visible in the four component formalism used so far, much
less recognizable in the two-component formalism.

The fact that a massive Majorana fermion and a Weyl
fermion are different objects is, in our opinion, uncontrover-
sial. The question whether a massless Majorana fermion is
or is not the same as a Weyl fermion at both classical and
quantum level, as we pointed out above, is not so clearly
established. Let us consider the case in which there is no
quantum number appended to the fermions. The reason why
they are sometimes considered as a unique object is due, we
think, to the fact that we can establish a one-to-one corre-
spondence between the components of a Weyl spinor and
those of a Majorana spinor in such a way that the Lagrangian
(particularly in two-component notation) looks the same. In
fact this is not decisive, as we will see in a moment. But
let us mention first the evident differences between the two.
The first, and most obvious, is the one we have already men-
tioned: they belong to two different representations of the
Lorentz group, irreducible to each other (it should be standard
lore that in 4d there cannot exist a spinor that is simultane-
ously Majorana and Weyl). Another macroscopic difference
is that the helicity of a Weyl fermion is well defined and cor-
responds to its chirality, while the chirality of a Majorana
fermion is undefined, so that the relation with its helicity is
also undefined. Next, a parity operation maps the Majorana
action into itself, while it maps the Weyl action (5) into the
same action for the opposite chirality. Same for the charge
conjugation operator. Finally, going to the quantum theo-
ries, the fermion path integral measures in the two cases
are different. This is the crucial point as far as the matter
discussed in this paper is concerned, i.e. anomalies. Let us
expand on it. The path integral of a free Dirac fermion (3)
is interpreted as the determinant of the massless Dirac oper-
ator /D = i /∂ + /V (where V denotes any potential), i.e. the
(suitably regularized) product of its eigenvalues. A similar
interpretation holds for a massless Majorana fermion, while
for a Weyl fermion it is not so straightforward. Since the
Dirac operator anticommutes with γ5, it maps a left-handed
spinor to a right-handed one. Therefore the eigenvalue prob-
lem is not even defined for /DL = /D PL . We may replace the

looked for det /DL with
(

det
(

/D†
L

/DL

)) 1
2
. But in this case we

have to face the problem of an undetermined overall phase
factor. This impasse has been known for a long time.3 A few

3 It is well known that in particular this prevents using the Fujikawa
method for chiral theories, because the latter, at least in its original
form, holds when in the theory both chiralities are present. This prob-
lem has been discussed in detail in [12], with explicit examples: it is
shown there that the original Fujikawa method cannot reproduce the
non-Abelian consistent chiral anomalies, but only the covariant ones
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ways have been devised to overcome it. One is to use a per-
turbative approach, via the Feynman diagram technique, in
a chiral fermion theory, wherein Lorentz covariance is taken
into account via the chiral vertices. This is the method used
in [1,2]. We will revisit it below. Later on (in Part II) we
will consider another approach, based on Dirac fermions,
[4,12,13], (i.e. with the ordinary Dirac path integral mea-
sure), whereby the chiral fermion theory is recovered as a
limiting case. Finally, although we do not use it here, we
should mention the method recently devised in [14], where
a fifth dimension is introduced as a regulator.

We think the above arguments are more than enough
to conclude that massless Majorana and Weyl fermions,
notwithstanding some similarities, may really be different
objects. However, to conclude, it is worth trying to counter a
common misconception that comes from what we said above:
we can establish a one-to-one correspondence between the
components of a Weyl spinor and those of a Majorana spinor
in such a way that the Lagrangians in two-component nota-
tion look the same. If, for instance, in the chiral representation

we represent ψL as

(
ω

0

)
, where ω is a two component spinor,

then (5) above becomes

iω†σ̄ μ∂μω, (22)

which has the same form as a massless Majorana action. Now,
if the action is the same for both Weyl and Majorana, how
can there be differences? This (problematic) syllogism may
cause gross misunderstandings. Well, first, in general, the
action of a physical system does not contain all the informa-
tion concerning the system, there being specifications that
have to be added separately. Second, even though numeri-
cally the actions coincide, the way the actions respond to a
variation of the Weyl and Majorana field is different. One
leads to the Weyl equation of motion, the other to the Majo-
rana one. The delicate point is precisely this: when we take
the variation of an action with respect to a field in order to
extract the equations of motion, we have to make sure that

Footnote 3 continued
in chirally symmetric theories. It follows that one cannot expect to be
able to reproduce the odd parity trace anomaly in a left-handed theory,
because the latter belongs to the same class as the non-Abelian con-
sistent chiral anomalies, that is, the class of anomalies having opposite
sign for opposite chirality. This remark applies to [3], which, following
the method of Fujikawa and using Pauli–Villars regularization, obtains
a vanishing odd trace anomaly and seems to contradict our result below.
Although we intend to return more punctually on this issue, let us point
out for the time being that using a Dirac fermion path integration mea-
sure amounts to introducing in the game both chiralities, even though
formally the action is declared to be the Weyl one. We have seen that the
classical action can take various forms, but for this anomaly what mat-
ters is that only one chirality is involved through all the steps, including
the path integration measure. Therefore, we believe, the result of [3]
applies to Dirac and Majorana fermions and is in fact consistent with
ours.

the variations do not break the symmetries or the properties
we wish to be present in the equations of motion. In general,
we do this automatically, without thinking of it.4 But in this
case more than the normal care has to be used. If we wish the
EoM to preserve chirality we must use variations that pre-
serve chirality, i.e. must be eigenfunctions of γ5. If instead
we wish the EoM to transform in the Majorana representation
we have to use variations that transform suitably, i.e. must be
eigenfunctions of the charge conjugation operation. If we do
so we o btain two different results, which are irreducible to
each other, no matter what action we use.5 Third, and most
important, as already pointed out, in the quantum theory a
crucial role is played by the functional measure, which is
very likely to be different for Weyl and Majorana fermions.

Concluding this introductory discussion, we think the
identification of a Weyl fermion with a massless Majorana
one should not be taken as granted as sometimes stated in
the literature. It is prudent to avoid a priori conclusions, but
rather develop both hypotheses (not only one) and compare
the end results. This said, it is important to find properties
that differentiate Weyl and massless Majorana fermions. In
this paper, following [1,2], we show that one such property
is the parity odd Weyl anomaly. The latter is 0 for a massless
Majorana fermion, while it equals the Pontryagin density for
a Weyl fermion (the even parity trace anomaly is the same
for both).

Part I

3 Odd parity trace anomaly in chiral theories

In this section we reconsider the calculation of the odd trace
anomaly in [1] (for an introduction to anomalies see [15–
17]). The motivation for this is that in [1], as well as in [2],
tadpoles and seagull diagrams were disregarded. In ordinary
(non-chiral) theories coupled to gravity such diagrams con-
tribute local terms to the effective action, and help restoring
conservation, which otherwise would be violated by local
terms, [18]. As we shall see below, these diagrams are instead
ineffective for the parity odd diagrams in a chiral theory, and
do not change the final result. However, a complete treat-
ment demands that they should be taken into account and
evaluated.

4 For instance, in gravity theories, the metric variation δgμν is generic
while not ceasing to be a symmetric tensor.
5 It is clear that, eventually, all the components, both of a Weyl and a
massless Majorana fermion, satisfy the massless Klein–Gordon equa-
tion. But this is not a qualifying property in this context, otherwise,
for instance, any two (anticommuting) complex massless scalar fields
would be the same as a Weyl fermion, and any four real massless scalar
fields would be the same as a massless Majorana fermion.
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The model we considered in [1] was a left-handed Weyl
spinor coupled to external gravity in 4d. The action is

S =
∫

d4x
√|g| iψLγ m

(
∇m + 1

2
ωm

)
ψL (23)

where γ m = em
a γ a , ∇ (m, n, ... are world indices, a, b, ...

are flat indices) is the covariant derivative with respect to the
world indices and ωm is the spin connection:

ωm = ωab
m �ab

where �ab = 1
4 [γa, γb] are the Lorentz generators. Finally

ψL = 1+γ5
2 ψ . Classically the energy-momentum tensor

T μν = − i

4
ψLγ μ

↔
∇νψL + (μ ↔ ν) (24)

is both conserved on shell and traceless.
From (23) we extracted the (simplified) Feynman rules as

follows. The action (23) can be written as

S=
∫

d4x
√|g|

[
i

2
ψLγ μ

↔
∂ μψL−1

4
εμabcωμabψLγcγ5ψL

]

(25)

where it is understood that the derivative applies to ψL and
ψL only. We have used the relation {γ a, �bc} = i εabcdγdγ5.

Expanding

ea
μ = δa

μ + χa
μ + · · · , eμ

a = δμ
a + χ̂μ

a + · · · ,

and gμν = ημν + hμν (26)

and inserting these expansions in the defining relations
ea
μeμ

b = δa
b , gμν = ea

μeb
νηab, one finds

χ̂μ
ν = −χμ

ν and hμν = 2 χμν. (27)

Expanding accordingly the spin connection

ωμab = eνa(∂μeν
b + eσ

b�σ
ν
μ),

�σ
ν
μ = 1

2
ηνλ(∂σ hλμ + ∂μhλσ − ∂λhσμ) + · · ·

after some algebra one gets

ωμab εμabc = −1

4
εμabc ∂μhaλ hλ

b + · · · . (28)

Therefore, up to second order the action can be written
(by incorporating

√|g| in a redefinition of the ψ field)

S ≈
∫

d4x

[
i

2
(δμ

a − 1

2
hμ

a )ψLγ a ↔
∂ μψL

+ 1

16
εμabc ∂μhaλ hλ

b ψ̄Lγcγ5ψL

]
.

The free action is

Sfree =
∫

d4x
i

2
ψLγ a ↔

∂ aψL (29)

and the lowest interaction terms are

Sint =
∫

d4x

[
− i

4
hμ

a ψLγ a ↔
∂ μψL

+ 1

16
εμabc ∂μhaλ hλ

b ψ̄Lγcγ5ψL

]
. (30)

Retaining only the above terms of the action of (30), the
Feynman rules are as follows (momenta are ingoing and
the external gravitational field is assumed to be hμν). The
fermion propagator is

P : i

/p + iε
. (31)

The two-fermion–one-graviton vertex is

V f f h : − i

8

[
(p + p′)μγν + (p + p′)νγμ

] 1 + γ5

2
. (32)

The two-fermion–two-graviton vertex (V ε
f f hh) is

V ε
f f hh : 1

64
tμνμ′ν′κλ(k − k′)λγ κ 1 + γ5

2
(33)

where

tμνμ′ν′κλ = ημμ′ενν′κλ + ηνν′εμμ′κλ + ημν′ενμ′κλ

+ηνμ′εμν′κλ. (34)

3.1 Complete expansion

The previous action (23) is a simplified one. It disregards the
measure

√|g|, which is incorporated in the fermion field ψ .
In a more complete approach one should take into account
tadpole and seagull terms and reinsert

√|g| in the action.
Some of these, in principle, might be relevant for the trace
anomaly. To this end we need the complete expansion in hμν

up to order three of the action, more precisely,

gμν = ημν + hμν,

gμν = ημν − hμν + (h2)μν + · · · ,

eμ
a = δμ

a − 1

2
hμ

a + 3

8
(h2)μa − 5

16
(h3)μa + · · · ,

ea
μ = δa

μ + 1

2
ha

μ − 1

8
(h2)a

μ + 1

16
(h3)a

μ + · · · ,

√|g| = 1 + 1

2
(tr h) + 1

8
(tr h)2 − 1

4
(tr h2) − 1

8
(tr h)(tr h2)

+ 1

48
(trh)3 + 1

6
(trh3) + · · · , (35)

and

�λ
μν = 1

2

(
∂μhλ

ν + ∂νhλ
μ − ∂λhμν

)

−1

2
(h − h2)λρ

(
∂μhρν + ∂νhρμ − ∂ρhμν

)
. (36)
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In this approximation the spin connection is

ωab
μ = 1

2

(
∂bha

μ − ∂ahb
μ

)
+ 1

4

(
hσa∂σ hb

μ − hσb∂σ ha
μ

+hbσ ∂ahσμ − haσ ∂bhσμ

)

−1

8

(
haσ ∂μhb

σ − hbσ ∂μha
σ

)

+1

8

(
(h2)aλ∂μhb

λ − (h2)bλ∂μha
λ

)

+ 3

16

(
(h2)aλ∂bhμλ − (h2)bλ∂ahμλ

)

− 3

16

(
(h2)aλ∂λhb

μ − (h2)bλ∂λha
μ

)

+1

8

(
haρhbλ − hbρhaλ

)
∂λhμρ + · · · . (37)

Up to third order in h the action is

S =
∫

d4x
[ i

2
ψLγ m ↔

∂ mψL − i

4
ψL hm

a γ a ↔
∂ mψL

+ 3i

16
ψL(h2)m

a γ a ↔
∂ mψL − 5i

32
ψL(h3)m

a γ a ↔
∂ mψL

− 1

16
εmabcψLγcγ5ψL

(
hσ

m∂ahbσ + (h2)σm∂bhaσ

−hρ
mhσ

a ∂σ hρb − 1

2
hρ

m∂ahρσ hσ
c

)

+1

2
(trh)

(
i

2
ψLγ m ↔

∂ mψL − i

4
ψL hm

a γ a ↔
∂ mψL

+ 3i

16
ψL(h2)m

a γ a ↔
∂ mψL

− 1

16
εmabcψLγcγ5ψL hσ

m∂ahbσ

)

+
(

1

8
(tr h)2 − 1

4
(tr h2)

)(
i

2
ψLγ m ↔

∂ mψL

− i

4
ψL hm

a γ a ↔
∂ mψL

)

+
(

−1

8
(tr h)(tr h2) + 1

48
(trh)3 + 1

6
(trh3)

)

i

2
ψLγ m ↔

∂ mψL + · · ·
]
. (38)

The propagator (31) comes from the first term of the first
line in the RHS of (38). The vertex V f f h comes from the
second term, while V ε

f f hh originates from the first term in
the second line of (38). There are many other vertices of the
type V f f h, V f f hh, V f f hhh . It is important to single out which
may be relevant to trace anomalies.

The Ward identity for Weyl invariance, in the absence of
anomalies, is

T(x) ≡ gμν(x)〈〈T μν(x)〉〉 = 〈〈T μ
μ (x)〉〉

+hμν(x)〈〈T μν(x)〉〉 = 0. (39)

Writing

〈〈T μν(x)〉〉 = 〈0|T μν

(0) (x)|0〉

+
∞∑

n=1

1

2nn!
∫ n∏

i=0

dxi hμ1ν1(x1) . . . hμnνn (xn)

×T μνμ1ν1···μnνn (x, x1, . . . , xn), (40)

order by order in h, Eq. (39) breaks down to

T(0)(x) ≡ 〈0|T(0)μ
μ(x)|0〉 = 0, (41)

T(1)(x) ≡ T μμ1ν1
μ (x, x1)

+2δ(x − x1)〈0|T μ1ν1
(0) (x)|0〉 = 0, (42)

T(2)(x) ≡ T μμ1ν1μ2ν2
μ (x, x1, x2)

+2δ(x − x1)T μ1ν1μ2ν2(x, x2)

+2δ(x − x2)T μ2ν2μ1ν1(x, x1) = 0, (43)

where

T μν

(0) = 2
δS

δhμν(x)

∣∣∣∣
h=0

= − i

4

(
ψLγ μ

↔
∂νψL + μ ↔ ν

)

+ i

2
ημν ψLγ m ↔

∂ mψL , (44)

T μνμ1ν1(x, x1) = i〈0|T T μν

(0) (x)T μ1ν1
(0) (x1)|0〉

−ημ1ν1δ(x − x1)〈0|T μν

(0) (x)|0〉

+4〈0| δ2S

δhμν(x)δhμ1ν1(x1)
|0〉, (45)

and

T μνμ1ν1μ2ν2(x, x1, x2)

= −〈0|T T μν

(0) (x)T μ1ν1
(0) (x1)T

μ2ν2
(0) (x2)|0〉

+4i〈0|T T μν

(0) (x)
δ2S

δhμ1ν1(x1)δhμ2ν2(x2)
|0〉

−iημ1ν1δ(x − x1)〈0|T T μν

(0) (x)T μ2ν2
(0) (x2)|0〉

−iημ2ν2δ(x − x2)〈0|T T μν

(0) (x)T μ1ν1
(0) (x1)|0〉

+4i〈0|T T μ1ν1
(0) (x1)

δ2S

δhμν(x)δhμ2ν2(x2)
|0〉

+4i〈0|T T μ2ν2
(0) (x2)

δ2S

δhμ1ν1(x1)δhμν(x)
|0〉

+ (ημ1ν1ημ2ν2 + ημ1ν2ημ2ν1 + ημ1μ2ην1ν2
)

×δ(x − x1)δ(x − x2)〈0|T μν

(0) (x)|0〉

−4ημ1ν1δ(x − x1)〈0| δ2S

δhμν(x)δhμ2ν2(x2)
|0〉

−4ημ2ν2δ(x − x2)〈0| δ2S

δhμν(x)δhμ1ν1(x1)
|0〉

+8〈0| δ3S

δhμν(x)δhμ1ν1(x1)hμ2ν2(x2)
|0〉. (46)
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The functional derivatives of S with respect to h are under-
stood to be evaluated at h = 0.

In the sequel we will need the explicit expressions of ver-
tices, up to order two in h (for a derivation of Feynman rules
see Appendix B, in particular B.1 and B.2). Beside (32) and
(33) we have

V ′
f f h : i

4
ημν(/p + /p′)PL , (47)

V ′
f f hh : 3i

64

[(
(p + p′)μγμ′ηνν′ + (p + p′)μγν′ηνμ′

+{μ ↔ ν}) + (
(p + p′)μ′γμηνν′

+(p + p′)μ′γνημν′ + {μ′ ↔ ν′})] PL , (48)

V ′′
f f hh : − i

16

[
ημν

(
(p + p′)μ′γν′ + (p + p′)ν′γμ′

)
+ημ′ν′

(
(p + p′)μγν + (p + p′)νγμ

)]
PL , (49)

V ′′′
f f hh : i

8
(/p + /p′)(ημνημ′ν′ − ημν′ημ′ν − ημμ′ηνν′)PL .

(50)

So far we have been completely general. From now on we
consider only odd correlators, that is, only correlators linear
in εμνλρ . To start with, to 〈0|T(0)μ

μ(x)|0〉, which is a con-
stant, only a tadpole can contribute, but its odd part vanishes
because there is no scalar one can construct with ε and η.
For the same reason also 〈0|T μν

(0) (x)|0〉 vanishes. The two-

point function 〈0|T T μν

(0) (x)T μ1ν1
(0) (x1)|0〉 also must vanish,

because in momentum space it must be a 4-tensor linear in ε

and formed with η and the momentum k: there is no such ten-
sor, symmetric in μ ↔ ν, μ1 ↔ ν1 and (μ, ν) ↔ (μ1, ν1).
As for the terms 〈0| δ2 S

δhμν(x)δhμ1ν1 (x1)
|0〉 they might also pro-

duce non-vanishing contribution from tadpoles diagram, but
like in the previous case it is impossible to satisfy the combi-
natorics. In conclusion (41) and (42) are identically satisfied,
while (43) becomes

T(2)(x) = T μμ1ν1μ2ν2
μ (x, x1, x2)

= ημν

(
− 〈0|T T μν

(0) (x)T μ1ν1
(0) (x1)T

μ2ν2
(0) (x2)|0〉

+4i〈0|T T μν

(0) (x)
δ2S

δhμ1ν1(x1)δhμ2ν2(x2)
|0〉

+4i〈0|T T μ1ν1
(0) (x1)

δ2S

δhμν(x)δhμ2ν2(x2)
|0〉

+4i〈0|T T μ2ν2
(0) (x2)

δ2S

δhμ1ν1(x1)δhμν(x)
|0〉

+8〈0| δ3S

δhμν(x)δhμ1ν1(x1)hμ2ν2(x2)
|0〉
)
. (51)

To proceed we focus now on the terms containing the sec-
ond derivative of S. Looking at (38) we see that there are

several such terms. We argue now that those among them
that do not contain the ε tensor, although the gamma trace
algebra may generate an ε tensor, cannot contribute to the
odd trace anomaly. The vertices corresponding to such terms
have two fermion and two graviton legs, that is, they are of the
type V f f hh . By Fourier transform, we associate an incoming
eipx plane wave to one fermion and an outgoing e−i p′x one
to the other, while we associate two incoming plane waves
eik1x , eik2x to the two gravitons. Since none of them contain
derivatives of h, the vertex will depend at most on q = k1+k2,
not on k1 − k2; see for instance the vertex coming from the
third term in the first line of (38), i.e. V

′
f f hh .

This being so, the contributions from the terms related to
the second derivative of S in (51) via such vertices, and linear
in ε, must vanish, because it is impossible to form a 4-tensor
symmetric in μ1 ↔ ν1, μ2 ↔ ν2 and (μ1, ν1) ↔ (μ2ν2)

with ε, η and qμ. It follows that only the contribution with the
vertex V ε

f f hh might contribute non-trivially to the odd trace
anomaly. Looking at the form of V ε

f f hh , it is clear that the
two terms in the third line of (51) give vanishing contribution
because the contraction of μ with ν becomes a (vanishing)
contraction of the t tensor, (34).

Next let us consider the fourth line of (51). These are
seagull terms, with three external graviton lines attached to
the same point of a fermion loop. The gamma trace algebra
cannot generate an ε tensor from all such terms, except of
course the second term in the second line and the one in the
fourth line. Therefore we can exclude all the former from
our consideration. As for the latter the relevant vertex has
two fermion legs, with the usual momenta p and p′, and
three graviton legs, with incoming momenta k1, k2, k3 and
labels μ1, ν1, μ2, ν2 and μ3, ν3, respectively. Its expression
for the second term in the second line of (51) is

∼ εμ2μ3λρkλ
3γ ρημ1ν3ην1ν2 (52)

symmetrized in μ1 ↔ ν1, μ2 ↔ ν2, μ3 ↔ ν3, and with
respect to the exchange of any two couples (μi , νi ). The
seagull term is therefore proportional to∫

d4 p
pρ

p2

which vanishes. As for the term in the fourth line of (51), one
comes to similar conclusions.

In summary, the odd trace anomaly receives contributions
only from

T(2)(x) = T μμ1ν1μ2ν2
μ (x, x1, x2)

= ημν

(
− 〈0|T T μν

(0) (x)T μ1ν1
(0) (x1)T

μ2ν2
(0) (x2)|0〉

+4i〈0|T T μν

(0) (x)
δ2S

δhμ1ν1(x1)δhμ2ν2(x2)
|0〉
)
. (53)

This result looks very much like the starting point of [1], i.e.
it seems to reduce to the same contributions, i.e. the triangle
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diagram and bubble diagram (which turned out to vanish),
but there is an important modification: the T μν

(0) (x) is dif-
ferent from the free e.m. tensor in [1], the definition (44)
contains an additional piece (the second). It is not hard to
show that the second term in the RHS of (53) vanishes also
when taking account of this modification. As for the three-
point function in the first term of (53) we obtain of course the
same result as in [1] when the calculation is made with three
vertices V f f h : P–V f f h–P–V f f h–P–V f f h (for the reader’s
convenience this calculation is repeated in Appendix A); it is
0 when the second or third vertices are replaced by V ′

f f h , and
it is −4 times the result of [1] if the first vertex is replaced
by V ′

f f h , i.e. P–V ′
f f h–P–V f f h–P–V f f h . When we replace

more than one vertex V f f h with V ′
f f h we get 0. So the overall

result of (53) is (1 − 4 = −3) times the end result for the
trace anomaly in [1].

We will see below, however, that this modification of the
anomaly must be canceled in order to guarantee conservation.
Let us call the lowest order integrated anomaly, obtained in
[1], Aω = − ∫ ωA0. Then the new addition equals −4Aω.
By adding to the effective action the term C = − ∫ 1

2 trh A0

we exactly cancel this additional unwanted piece. We will
verify that this counterterm cancels an analogous anomalous
term in the Ward identity of the diffeomorphisms, anomalous
term which is generated by the same diagram P–V ′

f f h–P–
V f f h–P–V f f h , which is the cause of the additional term in
question in the trace anomaly.

In conclusion, the only relevant term for the odd trace
anomaly is the P–V f f h–P–V f f h–P–V f f h one. This is the
term we have computed first in [1], which gives rise to the
Pontryagin anomaly. It should be remarked that in the odd
trace anomaly calculation there are no contributions from
tadpole and seagull terms.

3.2 Odd trace anomaly for Dirac and Majorana fermions

The action for a Dirac fermion is the same as in (38) with
ψL everywhere replaced by the Dirac fermion ψ . In order
to evaluate the odd trace anomaly we remark that an odd
contribution in (46) can come only from the terms in (38)
that contain the ε tensor. Since these terms contain γ5, upon
tracing the gamma matrix part, either they give 0 or another
ε tensor. In the latter case they produce an even contribution
to the trace anomaly, which does not concern us here. In
conclusion the odd trace anomaly, in the case of a Dirac
fermion, vanishes.

When the fermion are Majorana the conclusion does not
change. The simplest way to see it is to use the Majorana
representation for the gamma matrices. Then ψ has four real
components, and the only change with respect to the Dirac
case is that in the path integral we integrate over real fermion

fields instead of complex ones, while all the rest remains
unchanged. The conclusion is obvious.

4 Conservation of the e.m. tensor

As already anticipated above, trace anomalies are strictly
connected with diffeomorphism anomalies. In 4d the so-
called Einstein–Lorentz anomalies are absent, but there may
appear other anomalous terms in the Ward identity of the
diffeomorphisms. The latter together with a Weyl anomaly
partner form a cocycle of the joint diff + Weyl cohomology;
see [19,20]. Usually, by adding a local counterterm to the
effective action, one can restore diffeomorphism invariance.
In the present case, odd parity trace anomaly, the analysis of
such possible anomalies was carried out in a simplified form
in [2]. In this section we wish to complete that analysis by
considering also tadpoles and seagull terms.

If we take into account the tadpole and seagull terms in
the conservation law one has to take into account also the
VEV of the e.m. tensor. Let us set

〈0|T μν

(0) (x)|0〉 = 〈0|T μν

(0) (0)|0〉 = �μν = Aημν. (54)

The Ward identity is

∇μ〈〈T μν(x)〉〉 = ∂μ〈〈T μν(x)〉〉 + �
μ
μλ〈〈T λν(x)〉〉

+�ν
μλ〈〈T μλ(x)〉〉 = 0 (55)

because 〈〈T μν(x)〉〉 ≡ 2√−g
δW

δgμν(x)
. To first order in hμν we

have

�ν
μλ(x) ≈ 1

2

(
∂μhν

λ + ∂λhν
μ − ∂νhμλ

)

�
μ
μλ(x) ≈ 1

2
∂λhμ

μ. (56)

Now we use (40), (44), (45) and (46). To the zeroth order in
h (55) implies

∂μ〈0|T μν(x)|0〉 = 0. (57)

To get the WI to first order one must differentiate (55) with
respect to hμν . One has

δhμν(x)

δhλρ(y)
= 1

2

(
δλ
μδρ

ν + δλ
ν δρ

μ

)
δ(x − y) (58)

Differentiating the first term on the RHS of (55) one gets the
ordinary divergence of the two-point function. Then

δ�
μ
μλ(x)

δhμ1ν1(y)
= 1

2
ημ1ν1∂x

λ δ(x − y) (59)
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and

δ�ν
μλ(x)

δhμ1ν1(y)
= 1

4

(
∂μδ(x − y)

(
δ
ν1
λ ημ1ν + δ

μ1
λ ην1ν

)

+∂λδ(x − y)
(
δμ1
μ ηνν1 + δν1

μ ηνμ1
)

− ∂νδ(x − y)
(
δ
ν1
λ δμ1

μ + δ
μ1
λ δν1

μ

))
. (60)

Putting everything together one finds

∂x
μT μνμ1ν1(x, y) + 1

2
ημ1ν1∂x

λ δ(x − y)�λν

+1

2

(
∂x
λ δ(x − y)ημ1ν�λν1

+∂x
λ δ(x − y)ην1ν�λμ1 − ∂x νδ(x − y)�μ1ν1

)
= i∂x

μ〈0|T T μν

(0) (x)T μ1ν1
(0) (y)|〉

+4∂x
μ〈0| δ2S

δhμν(x)δhμ1ν1(y)
|0〉

+∂x
λ δ(x − y)ημ1ν�λν1

+∂x
λ δ(x − y)ην1ν�λμ1 − ∂x νδ(x − y)�μ1ν1 = 0.

(61)

We have already noted that, for what concerns the odd part,
all the terms in the RHS vanish. Therefore conservation is
guaranteed up to second order in h.

The order three Ward identity has a rather cumbersome
expression, in particular it contains various terms linear in
�μν . Since they do not contribute to the odd part of the iden-
tity we drop them altogether. The remaining terms are

−∂x
μ〈0|T T μν

(0) (x)T μ1ν1
(0) (x1)T

μ2ν2
(0) (x2)|0〉

+4i∂x
μ〈0|T T μν

(0) (x)
δ2 S

δhμ1ν1 (x1)δhμ2ν2 (x2)
|0〉

+4i∂x
μ〈0|T T μ2ν2

(0) (x2)
δ2 S

δhμν(x)δhμ1ν1 (x1)
|0〉

+4i∂x
μ〈0|T T μ1ν1

(0) (x1)
δ2 S

δhμν(x)δhμ2ν2 (x2)
|0〉

−4ημ1ν1∂x
μ

(
δ(x − x1)〈0| δ2 S

δhμν(x)δhμ2ν2 (x2)
|0〉
)

−4ημ2ν2∂x
μ

(
δ(x − x2)〈0| δ2 S

δhμν(x)δhμ1ν1 (x1)
|0〉
)

−i∂x
μ

(
δ(x − x1)η

μ1ν1 〈0|T T μν

(0) (x)T μ2ν2
(0) (x2)〉

+δ(x − x2)η
μ2ν2 〈0|T T μν

(0) (x)T μ1ν1
(0) (x1)〉

)

+∂x
λ δ(x − x1)η

μ1ν1
(

i〈0|T T λν
(0) (x)T μ2ν2

(0) (x2)|0 〉

+4〈0| δ2 S

δhλν(x)δhμ2ν2 (x2)
|0〉
)

+∂x
λ δ(x − x2)η

μ2ν2
(

i〈0|T T λν
(0) (x)T μ1ν1

(0) (x1)|0〉

+4〈0| δ2 S

δhλν(x)δhμ1ν1 (x1)
|0〉
)

+ (∂x
μδ(x − x1)

(
δ
μ1
λ ηνν1 + δ

ν1
λ ηνμ1

)− ∂xνδ(x − x1)δ
μ1
μ δ

ν1
λ

)

·
(

i〈0|T T μλ

(0) (x)T μ2ν2
(0) (x2)〉 + 4〈0| δ2 S

δhμλ(x)δhμ2ν2 (x2)
|0〉
)

+ (∂x
μδ(x − x2)

(
δ
μ2
λ ηνν2 + δ

ν2
λ ηνμ2

)− ∂xνδ(x − x2)δ
μ2
μ δ

ν2
λ

)

·
(

i〈0|T T μλ

(0) (x)T μ2ν2
(0) (x2)〉 + 4〈0| δ2 S

δhμλ(x)δhμ1ν1 (x1)
|0〉
)

+8∂x
μ〈0| δ3S

δhλν(x)δhμ1ν1 (x1)δhμ2ν2 (x2)
|0〉 = 0. (62)

In the above discussion concerning the odd trace anomaly
we have already met some of the terms appearing in this
formula. As already noted there, the two-point functions
〈0|T T μν

(0) (x)T λρ

(0) (y)|0〉 cannot contribute to the odd part
because the combinatorics of the ε and η tensor plus an exter-
nal momentum does not allow it. Next the VEV’s of second
and third derivative of S with respect to h cannot contribute
with a tadpole term: if we look at (38) and focus on the ver-
tices that can give an odd parity contribution, i.e. those con-
taining the ε tensor, we notice that they depend linearly on
the external momenta (not on the fermion momenta); there-
fore, in a tadpole term, the momentum integrand can only be
linear in the internal momentum pμ, and thus vanishes.

Therefore (62), as far as the odd part is concerned, reduces
to

−∂x
μ〈0|T T μν

(0) (x)T μ1ν1
(0) (x1)T

μ2ν2
(0) (x2)|0〉

+4i∂x
μ〈0|T T μν

(0) (x)
δ2S

δhμ1ν1(x1)δhμ2ν2(x2)
|0〉

+4i∂x
μ〈0|T T μ2ν2

(0) (x2)
δ2S

δhμν(x)δhμ1ν1(x1)
|0〉

+4i∂x
μ〈0|T T μ1ν1

(0) (x1)
δ2S

δhμν(x)δhμ2ν2(x2)
|0〉 = 0. (63)

The last three terms on the LHS can be shown to vanish. The
proof is not as simple as the previous ones. One has to push
the calculations one step further, introduce a dimensional
regulator and use Feynman parametrization (see Appendix
B). The integration over the relevant parameter can easily be
shown to vanish. What remains to be verified is therefore

∂x
μ〈0|T T μν

(0) (x)T μ1ν1
(0) (x1)T

μ2ν2
(0) (x2)|0〉 = 0. (64)

Let us consider the term generated by the diagram P–V ′
f f h–

P–V f f h–P–V f f h . We have already calculated it above,
it equals −∂x

ν A(x), where A(x) is the unintegrated Weyl
anomaly calculated in [1]. So conservation is violated by
this term. Adding to the action the term C = − ∫ 1

2 trhωA0,
as we have anticipated above, we get the diff variation

δξC = −
∫

∂νξ
ν A =

∫
ξν∂νA, (65)

which exactly cancels this anomaly.6

6 Concerning the signs remember that there is a relative – sign between
the unintegrated Diff and trace anomalies.
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Next we have to consider the diagram P–V f f h–P–V ′
f f h–

P–V f f h and P–V f f h–P–V f f h–P–V ′
f f h . In the on-shell

case, k2
1 = 0 = k2

2, these contributions can be shown to
vanish. It is enough to take Eq. (3.18) of [1]. The first dia-
gram corresponds to contracting this formula with kμ

1 or kν
1 .

It is easy to see that such a contraction vanishes. The second
diagram corresponds to contracting the same formula with

kμ′
2 or kν′

2 , which again vanishes. Therefore, at least in the
on-shell case these diagrams do not contribute.

In conclusion we have to verify (64) for the triangle dia-
gram P–V f f h–P–V f f h–P–V f f h (and the crossed one). This
is what we have already done in [1,2].

4.1 On-shell, off-shell and locality

In [1,2] the following integrals were used in order to compute
the relevant Feynman diagram:

∫
d4 p

(2π)4

∫
dδ�

(2π)δ

p2

(p2 + �2 + �)3

= 1

(4π)2

(
−2

δ
− γ + log(4π) − log �

)
∫

d4 p

(2π)4

∫
dδ�

(2π)δ

p4

(p2 + �2 + �)3

= �

2(4π)2

(
−2

δ
− γ + 4 + log(4π) − log �

)
(66)

and

∫
d4 p

(2π)4

∫
dδ�

(2π)δ

�2

(p2 + �2 + �)3 = − 1

2(4π)2∫
d4 p

(2π)4

∫
dδ�

(2π)δ

�2 p2

(p2 + �2 + �)3 = 1

(4π)2 � (67)

where � = u(1 − u)k2
1 + v(1 − v)k2

2 + 2uv k1k2, u, v are
Feynman parameters, and δ is the dimensional regulator: d =
4 + δ.

The odd trace anomaly is due to the term [1,2]

− 1

128

∫
d4 p

(2π)4

∫
dδ�

(2π)δ
tr

(
/p + /�

p2 − �2 (2p − k1)λγρ

× /p + /� − /k1

(p − k1)2 − �2 (2p − 2k1 − k2)αγβ
/p + /� − /q

(p − q)2 − �2
/�

γ5

2

)
.

(68)

This requires the two integrals (67), which must be further
integrated on v from 0 to 1 − u and on u from 0 to 1. The
integrations over the Feynman parameters are elementary and
lead to the result

T
μ
μαβλρ(k1, k2) = 1

192(4π)2 kσ
1 kτ

2

(
tλραβστ (k

2
1

+k2
2 + k1k2) − t (21)

λραβστ

)
. (69)

We report this result here to stress the fact that the terms
contained in it are contact terms and thus lead to a local
anomaly. In [2] we remarked that the piece proportional to
(k2

1 + k2
2) disappears on shell, and off-shell corresponds to a

trivial anomaly.
To compute the conservation law (64) we need also the

integrals (66). It is evident from the form of their RHS’s that
integrating on u andv will lead to non-contact terms, and non-
local expressions for the odd diff anomaly. However, if we
put k1 and k2 on shell things change. The contact terms have
been discussed in [2]. They can be eliminated by subtracting
local counterterms without spoiling the trace anomaly. As
for the non-contact terms they are polynomials of k1 and k2

multiplied by log k1·k2. All such terms are listed in Appendix
E of [2]. They look non-local. However, using the Fourier
transform∫

d4k1

(2π)4

d4k2

(2π)4 ei(k1(x−z)+k2(y−z)) log (k1 + k2)
2

= − 1

4π2 δ(4)(x − y)�z

(
1

(x − z)2 log
(x − z)2

4

)
, (70)

one can show that they give a vanishing contribution when
inserted into the effective action, because of the on-shell con-
dition �hμν = 0 (De Donder gauge). On the other hand,
when k1 and k2 are off shell, the anomaly looks non-local.
This is a surprise because we are used to think of anoma-
lies as local expressions. But we have learned from [21] and
from the higher spins analysis that when higher spins are
involved (including the metric) covariance generally requires
one to sacrifice locality. However, the ensuing non-locality is
a gauge artifact. By imposing a suitable gauge choice, local-
ity can be restored. As an example see Eq. (8.21) and others
in [21].

5 Additional remarks on Weyl and Majorana

Before leaving Part I of this paper let us add some comments
on the Pontryagin trace anomaly. A non-trivial property is
that it belongs to the family of chiral anomalies character-
ized by having opposite coefficients for opposite chiralities.7

This anomaly did not appear for the first time in [1]. The pos-
sibility of its existence due to its Wess–Zumino consistency
was pointed out in [22] and, although somewhat implicitly, its

7 This family includes in particular the consistent chiral anomalies in
gauge theories. Thus in selecting the regularization to compute the odd
trace anomaly, a necessary criterion is the ability to reproduce such
well-known consistent gauge anomalies.
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existence was implied by [23]. A similar anomaly was found
in a different contest (originating from an antisymmetric ten-
sor field) in the framework of an AdS/CFT in [24], where a
possible conflict with unitarity was pointed out. The same risk
has been pointed out, from a different viewpoint, in the intro-
duction of the present paper and in [1]. In general it seems that
its presence signals some kind of difficulty in properly defin-
ing the theory. Very likely for this reason the existence of the
Pontryagin trace anomaly for chiral fermions is still consid-
ered controversial and objections have been raised against it.
Such objections are often reducible to the credence that Weyl
fermions are equivalent to massless Majorana fermions. We
have already answered this naive objection and will not come
back to it. There are more serious issues however. One is
the following. In conformal field theory in 4d the three-point
functions of the energy-momentum tensor cannot have an odd
part, so how can an anomaly arise from the regularization of
a vanishing bare correlator? We have already answered this
question in [2]: an anomaly can arise as a simple quantum
effect; we have shown other examples of correlators which
do not arise from the regularization of non-vanishing bare
correlators, [25]. The crucial criterion is consistency.

A frequent prejudice is based on the lore that anoma-
lies appear only in connection with complex representa-
tions of the gauge group in question. This is actually true in
many cases for consistent chiral gauge anomalies. The latter
are linear in the completely symmetric ad-invariant tensors
of order n in even d = 2n − 2 dimension. For instance
in d = 4 the tensor in question is the symmetric tensor
dabc = 1

2 tr(T a{T b, T c}) with T a being the anti-hermitean
generators of the Lie algebra. It is clear that if the represen-
tation is real, i.e. T a is antisymmetric, dabc vanishes. For
instance in 4d there are no Einstein–Lorentz (a.k.a. diffeo-
morphisms and/or local Lorentz anomalies), because the cor-
responding representation of the Lorentz group is real. How-
ever, one cannot blindly tranfer the above criterion to the
case of trace anomalies. A hint that in such a case it may not
apply is the following: as we have explained in Sect. 2, the
fermionic functional determinant in a left-handed theory can
be thought of as a square root. This square root is likely to
give rise to a phase, which in turn would explain the imagi-
nary anomaly. To the best of our knowledge, it is impossible
to decide this a priori. Therefore we can only rely on the
explicit computation.

Another objection may arise from the following consider-
ation. Let us split the Dirac fermion into two Weyl fermions:
ψ = PLψ+ PRψ̂ = ψL +ψR . The terms that appear in (38),

in the Dirac case, are of the form ψγ a
↔
∂ mψ and ψγcγ5ψ .

They both split into the sum of the left and right-handed part.
With simple manipulations we have

ψRγ a ↔
∂ mψR = ψ†γ 0γ a PR

↔
∂ mψ

= ψT C−1γ aγ 0 PRC
↔
∂ mψ∗

= ψ̂ PRγ a PL
↔
∂ mψ̂ = ψ̂Lγ a ↔

∂ mψ̂L (71)

where ψ̂ = γ 0Cψ∗, and a similar expression for ψγcγ5ψ .
Thus, for instance, we can write

ψγ a ↔
∂ mψ = ψLγ a ↔

∂ mψL + ψ̂Lγ a ↔
∂ mψ̂L . (72)

Recall that ψ̂L = ψ̂R . A Majorana fermion satisfies the real-
ity condition ψ = ψ̂ , so we can split it, according to the
chiralities, ψ = PLψ + PRψ̂ . Then, looking at (72), we
have for instance

ψγ a ↔
∂ mψ = 2 ψLγ a ↔

∂ mψL . (73)

It would seem that the full Majorana action can be expressed
as twice the action for its left-handed part. Then one would
be led to conclude that there is an odd trace anomaly also for
a Majorana fermion. This is another possible pitfall induced
by a careless use of formal manipulations. The answer is the
same as in Sect. 2: one cannot consider the passage from ψ to
ψL in (73) as an allowed field redefinition, because it changes
the integration measure. Majorana and Weyl fermions have
their own appropriate actions, which faithfully represent their
properties; in each case one must refer to the appropriate
action, in particular, for Majorana fermions one should avoid
using the RHS of (73).

Finally there is one subtle issue that has been somehow
understood so far. We have stressed above that the crucial
ingredient in the calculation of anomalies is the functional
integral measure. We have also explained the problems con-
nected with the latter when chiral fermions are involved. In
Sect. 3 we have employed a Feynman diagram technique,
tacitly assuming that it reproduces the correct path integra-
tion measure. Although this must be the case, because the
relevant Feynman diagrams (with chiral propagators and chi-
ral vertices) are different from those for Dirac or Majorana
fermions, it is fair to say that we do not have a direct proof of
it. There is, however, a way to spell out any residual doubts
concerning the path integration measure. It relies in the ana-
log of the method used by Bardeen, [4]; for chiral gauge
anomalies, see also [13]. In such an approach one employs
Dirac fermions (and, consequently, the ordinary Dirac mea-
sure) and recovers the chiral fermion theory as a subcase, by
taking a specific limit. To this approach the second part of
the paper is devoted.

Part II

In this second part we consider another approach to the odd
trace anomaly, similar to Bardeen’s method to chiral gauge
anomalies in gauge theories, [4,12,13]. The latter consists in
introducing both a vector and an axial potential as external
sources of a free Dirac fermion theories in 4d. The usual con-
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sistent and covariant anomalies are obtained as specific limits
of this model. In order to transfer to gravity such a model we
need a second metric, an axial metric, beside the usual one.
We will call such a model metric-axial-tensor (MAT) gravity.

6 Metric-axial-tensor gravity

6.1 Axial metric

We use the symbols gμν, gμν and ea
μ, eμ

a in the usual sense
of metric and vierbein and their inverses. Then we introduce
the formal writing8

Gμν = gμν + γ5 fμν (74)

where f is a symmetric tensor. Their background values are
ημν and 0, respectively. So, to first order

gμν = ημν + hμν, fμν = kμν. (75)

In matrix notation the inverse of G, G−1, is defined by

G−1 = ĝ + γ5 f̂ , G−1G = 1, ĜμλGλν = δμ
ν , (76)

which implies

ĝ f + f̂ g = 0, ĝg + f̂ f = 1. (77)

That is,

f̂ = −ĝ f g−1, ĝ =
(

g − f g−1 f
)−1

. (78)

So

ĝ = (1 − g−1 f g−1 f )−1g−1,

f̂ = −(1 − g−1 f g−1 f )−1g−1 f g−1 (79)

Keeping up to second order terms:

gμν = ημν − hμν + hμ
λ hλν + · · · ,

ĝμν = ημν − hμν + hμ
λ hλν + kμ

λ kλν + · · · ,

f̂ μν = −kμν + hμ
λ kλν + kμ

λ hλν + · · · . (80)

6.2 MAT vierbein

Likewise for the vierbein one writes

Ea
μ = ea

μ + γ5ca
μ, Êμ

a = êμ
a + γ5ĉμ

a . (81)

This implies

ηab

(
ea
μeb

ν + ca
μcb

ν

)
= gμν, ηab

(
ea
μcb

ν + ea
νcb

μ

)
= fμν.

(82)

8 We use at times the suggestive terminology axial-complex for an
expression like Gμν , axial-real for gμν and axial-imaginary for fμν .
This alludes to a geometrical interpretation, which is, however, not nec-
essary to expand on in this paper.

Moreover, from Êμ
a Ea

ν = δ
μ
ν ,

êμ
a ca

ν + ĉμ
a ea

ν = 0, êμ
a ea

ν + ĉμ
a ca

ν = δμ
ν , (83)

one gets

êμ
a =

(
1

1 − e−1c e−1c
e−1

)μ

a
(84)

and

ĉμ
a = −

(
e−1c

1

1 − e−1c e−1c
e−1ce−1

)μ

a
. (85)

In accord with (75) we have

ea
μ = δa

μ + 1

2
ha

μ − 1

8
(hh + kk)a

μ

+ 1

16
(h3 + khk + hk2 + k2h)a

μ + · · · ,

êμ
a = δμ

a − 1

2
hμ

a + 3

8
(hh + kk)μa

− 5

16
(h3 + khk + hk2 + k2h)μa + · · · ,

ca
μ = 1

2
ka
μ − 1

8
(hk + kh)a

μ

+ 1

16
(k3 + hkh + h2k + kh2)a

μ + · · · ,

ĉμ
a = −1

2
kμ

a + 1

16
(hk + kh)μa

− 5

16
(k3 + hkh + h2k + kh2)μa + · · · , (86)

or

Ea
μ = δa

μ + 1

2
ha

μ − 1

8
(hh + kk)a

μ

+γ5

(
1

2
ka
μ − 1

8
(hk + kh)a

μ

)
+ · · · ,

Êμ
a = δμ

a − 1

2
hμ

a + 3

8
(hh + kk)μa

−γ5

(
1

2
kμ

a − 3

8
(hk + kh)μa

)
+ · · · . (87)

6.3 Christoffel and Riemann

The ordinary Christoffel symbols are

γ λ
μν = 1

2
gλρ

(
∂μgρν + ∂νgρμ − ∂ρgμν

)
. (88)
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The MAT Christoffel symbols are defined in a similar way

�λ
μν = 1

2
Ĝλρ

(
∂μGρν + ∂νGρμ − ∂ρGμν

)

= 1

2

(
ĝλρ

(
∂μgρν + ∂νgρμ − ∂ρgμν

)

+ f̂ λρ
(
∂μ fρν + ∂ν fρμ − ∂ρ fμν

))

+1

2
γ5
(
ĝλρ

(
∂μ fρν + ∂ν fρμ − ∂ρ fμν

)

+ f̂ λρ
(
∂μgρν + ∂νgρμ − ∂ρgμν

))

≡ �(1)λ
μν + γ5�

(2)λ
μν . (89)

Up to order two in h and k these become

�(1)λ
μν = 1

2

(
∂μhλ

ν + ∂νhλ
μ − ∂λhμν

−hλρ
(
∂μhνρ + ∂νhμρ − ∂ρhμν

)
−kλρ

(
∂μkνρ + ∂νkμρ − ∂ρkμν

) )+ · · · , (90)

�(2)λ
μν = 1

2

(
∂μkλ

ν + ∂νkλ
μ − ∂λkμν

−hλρ
(
∂μkνρ + ∂νkμρ − ∂ρkμν

)
−kλρ

(
∂μhνρ + ∂νhμρ − ∂ρhμν

) )+ · · · . (91)

Proceeding the same way one can define the MAT Rie-
mann tensor via Rμνλ

ρ :

Rμνλ
ρ = −∂μ�

ρ
νλ + ∂ν�

ρ
μλ − �ρ

μσ �σ
νλ + �ρ

νσ �σ
μλ

= −∂μ�
(1)ρ
νλ + ∂ν�

(1)ρ
μλ − �(1)ρ

μσ �
(1)σ
νλ + �(1)ρ

νσ �
(1)σ
μλ

−�(2)ρ
μσ �

(2)σ
νλ + �(2)ρ

νσ �
(2)σ
μλ

+γ5

(
− ∂μ�

(2)ρ
νλ + ∂ν�

(2)ρ
μλ − �(1)ρ

μσ �
(2)σ
νλ

+�(1)ρ
νσ �

(2)σ
μλ − �(2)ρ

μσ �
(1)σ
νλ + �(2)ρ

νσ �
(1)σ
μλ

)

≡ R(1)
μνλ

ρ + γ5R(2)
μνλ

ρ. (92)

The MAT spin connection is introduced in analogy,

�ab
μ = Ea

ν

(
∂μ Êνb + Êσb�ν

σμ

)

= �(1)ab
μ + γ5�

(2)ab
μ (93)

where

�(1)ab
μ = ea

ν

(
∂μêνb + êσb�(1)ν

σμ + ĉbσ �(2)ν
σμ

)

+ca
ν

(
∂μĉνb + êσb�(2)ν

σμ + ĉbσ �(1)ν
σμ

)
, (94)

�(2)ab
μ = ea

ν

(
∂μĉνb + êσb�(2)ν

σμ + ĉbσ �(1)ν
σμ

)

+ca
ν

(
∂μêνb + êσb�(1)ν

σμ + ĉbσ �(2)ν
σμ

)
. (95)

6.4 Transformations: diffeomorphisms

Under diffeomorphisms, δxμ = ξμ, the Christoffel symbols
transform as tensors except for one non-covariant piece,

δ
(n.c.)
ξ γ λ

μν = ∂μ∂νξ
λ. (96)

The same happens for the MAT Christoffel symbols

δ
(n.c.)
ξ �λ

μν = ∂μ∂νξ
λ. (97)

This means in particular that �
(2)λ
μν is a tensor.

It is more convenient to introduces also axial diffeomor-
phisms and use the following compact notation. The axially
extended (AE) diffeomorphisms are defined by

xμ → xμ + �μ, �μ = ξμ + γ5ζ
μ. (98)

Since operationally these transformations act the same way
as the usual diffeomorphisms, it is easy to obtain for the non-
covariant part

δ(n.c.)�λ
μν = ∂μ∂ν�

λ. (99)

We can also write

δ�Gμν = Dμ�ν + Dν�μ (100)

where �μ = Gμν�
ν .

In components one easily finds

δξ gμν = ξλ∂λgμν + ∂μξλgλν + ∂νξ
λgλμ,

δξ fμν = ξλ∂λ fμν + ∂μξλ fλν + ∂νξ
λ fλμ, (101)

δζ gμν = ζ λ∂λ fμν + ∂μζλ fλν + ∂νζ
λ fλμ,

δζ fμν = ζ λ∂λgμν + ∂μζλgλν + ∂νζ
λgλμ. (102)

Summarizing

δ
(n.c.)
ξ �(1)λ

μν = ∂μ∂νξ
λ, δ

(n.c.)
ξ �(2)λ

μν = 0,

δ
(n.c.)
ζ �(1)λ

μν = 0, δ
(n.c.)
ζ �(2)λ

μν = ∂μ∂νζ
λ, (103)

and the overall Riemann and Ricci tensors are tensor, and the
Ricci scalarR is a scalar. ButR(1) andR(2), separately, have
the same tensorial properties.

6.5 Transformations: Weyl transformations

There are two types of Weyl transformations. The first is the
obvious one,

Gμν −→ e2ωGμν, Ĝμν → e−2ωĜμν, (104)

and

Ea
μ −→ eω Ea

μ, Êμ
a → e−ω Êμ

a . (105)

This leads to the usual relations

�λ
μν −→ �λ

μν + ∂μω δλ
ν + ∂νω δλ

μ − ∂ρω ĜλρGμν (106)
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and

�ab
μ −→ �ab

μ +
(

Ea
μ Êσb − Eb

μ Êσa
)

∂σ ω. (107)

For infinitesimal ω this implies

δωgμν = 2ω gμν, δω fμν = 2ω fμν

δ(0)
ω hμν = 2ωημν, δ(1)

ω hμν = 2ωhμν, . . .

δ(0)
ω kμν = 0, δ(1)

ω kμν = 2ωkμν, . . . . (108)

The second type of Weyl transformation is the axial one,

Gμν −→ e2γ5ηGμν, Ĝμν → e−2γ5ηĜμν (109)

and

Ea
μ −→ eγ5η Ea

μ, Êμ
a → e−γ5η Êμ

a . (110)

This leads to

�λ
μν −→ �λ

μν + γ5

(
∂μη δλ

ν + ∂νη δλ
μ − ∂ρη ĜλρGμν

)
(111)

and

�ab
μ −→ �ab

μ + γ5

(
Ea

μ Êσb − Eb
μ Êσa

)
∂σ η. (112)

Equation (109) implies

gμν −→ cosh(2η) gμν + sinh(2η) fμν,

fμν −→ cosh(2η) fμν + sinh(2η) gμν, (113)

which, for infinitesimal η becomes

δηgμν = 2η fμν, δ(0)
η hμν = 0, δ(1)

η hμν = 2η kμν, . . .

δη fμν = 2η gμν, δ(0)
η kμν = 2η ημν,

δ(1)
η kμν = 2η hμν, . . . . (114)

6.6 Volume density

The ordinary density
√|g| is replaced by

√|G| = √
det(G) = √

det(g + γ5 f ). (115)

The expression in the RHS has to be understood as a formal
Taylor expansion in terms of the axial-complex variable g +
γ5 f . This means

tr ln(g + γ5 f ) = tr ln g + tr ln
(

1 + γ5(g
−1 f )

)

= tr ln g + 1

2
tr ln

(
1 − (g−1 f )2

)

+γ5 tr arcth(g−1 f )

= 1+γ5

2
tr ln(g + f )+1 − γ5

2
tr ln(g− f ).

(116)

It follows that

√|G| = e
1
2 tr ln(g+γ5 f ) = e

1
2

(
1+γ5

2 tr ln(g+ f )+ 1−γ5
2 tr ln(g− f )

)

= 1

2

(√
det(g + f ) +√

det(g − f )
)

+γ5

2

(√
det(g + f ) −√

det(g − f )
)

(117)

√|G| has the basic property that, under diffeomorphisms,

δξ

√|G| = ξλ∂λ

√|G| +√|G| ∂λξ
λ. (118)

This is a volume density, and it has the following properties:√|G| → e4ω
√|G|,√|G| → e4ηγ5

√|G|, (119)

under Weyl and axial-Weyl transformations, respectively.
Moreover,

1√|G|∂ν

√|G| = 1

2
Ĝμλ∂νGμλ = �μ

μν. (120)

7 Axial fermion theories

From the above it is evident that the action for fermion a
fermion field in interaction with MAT cannot be written in
the classical form

∫
d4x

√|g|ψOψ , as in the case of ordi-
nary gravity, where O is the usual operatorial kinetic oper-
ator in the presence of gravity, because in the MAT case√|G| contains the γ5 matrix. Instead,

√|G| must be inserted
between ψ and ψ . Moreover, we have to take into account
that the kinetic operator contains a γ matrix that anticom-
mutes with γ5. Thus, for instance, using DλGμν = 0 and
(Dλ + 1

2�λ)E = 0, where D = ∂ + �, one gets

ψγ a Êm
a

(
∂m + 1

2
�m

)
ψ = ψ(D̄μ + 1

2
�̄m)γ a Êm

a ψ

(121)

where a bar denotes axial-complex conjugation, i.e. a sign
reversal in front of each γ5 contained in the expression, for
instance �̄m = �

(1)
m − γ5�

(2)
m . The reader should be aware

that, in particular, a concise notation likeDμγ λ is ambiguous.
The MAT fermion action is now

S =
∫

d4x iψ
√

|Ḡ|γ a Êm
a

(
∂m + 1

2
�m

)
ψ

=
∫

d4x iψ
√

|Ḡ|γ a(êm
a + γ5ĉm

a )

(
∂m + 1

2

(
�(1)

m + γ5�
(2)
m

))
ψ

=
∫

d4x ψ

√
|Ḡ|(êm

a − γ5ĉm
a )

[
i

2
γ a ↔

∂ m

+ i

4

(
γ a�m + �̄mγ a)]ψ

=
∫

d4x ψ

√
|Ḡ|(êm

a − γ5ĉm
a )

[
i

2
γ a ↔

∂ m
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−1

4
εabcd

(
�

(1)
mbcγdγ5 + �

(2)
mbcγd

)]
ψ (122)

where it is understood that ∂m applies only to ψ or ψ , as
indicated, and Ḡ denotes the axial-complex conjugate. To
obtain this one must use (120) and (121).

7.1 Classical Ward identities

Let us consider AE diffeomorphisms first, (98). It is not hard
to prove that the action (122) is invariant under these trans-
formations. Now, define the full MAT e.m. tensor by means
of

Tμν = 2√|G|
←
δ S

δGμν

. (123)

This formula needs a comment, since
√|G| contains γ5. To

give a meaning to it we understand that the operator 2√|G|
←
δ

δGμν

in the RHS acts on the operatorial expression, say O
√|G|,

which is inside the scalar product, i.e. ψO
√|G|ψ . Moreover,

the functional derivative acts from the right of the action. Now
the conservation law under diffeorphisms is

0 = δ�S =
∫

ψ

←
δ O

δGμν

δGμνψ

=
∫

ψ

←
δ O

δGμν

(
Dμ�ν + Dν�μ

)
ψ

= −2
∫

ψ

←
δ O

δGμν

←
Dμ�νψ (124)

whereD acts (from the right) on everything except the param-
eter �ν . Differentiating with respect to the arbitrary param-
eters ξμ and ζ ν we obtain two conservation laws involving
the two tensors

T μν = 2ψ

←
δ O

δGμν

ψ, (125)

T μν
5 = 2ψ

←
δ O

δGμν

γ5ψ. (126)

At the lowest order the latter are given by Eqs. (148), (149)
below.

Repeating the derivation for the axial-complex Weyl trans-
formation one can prove that, assuming for the fermion field
the transformation rule

ψ → e− 3
2 (ω+γ5η), ψ, (127)

Equation (122) is invariant and we obtain the Ward identity

0 =
∫

ψ

←
δ O

δGμν

Gμν (ω + γ5η)ψ. (128)

We obtain in this way two WI’s

T μνgμν + T μν
5 fμν = 0, (129)

T μν fμν + T μν
5 gμν = 0, (130)

7.2 A simplified version

A simplified approach to the trace anomaly calculation con-

sists first in absorbing
√|G| in ψ by setting � = |G| 1

4 ψ and
thereby assuming the transformation properties

δ�� = �μ∂μ� + 1

2
Dμ�μ� (131)

for AE diffeomorphisms, and

δω+γ5� = e
1
2 ω+γ5η� (132)

for axial-complex Weyl transformations.
To arrive at an expanded action one uses (75) and (86), up

to second order, and finds

�(1)ab
μ = 1

2

(
∂bha

μ − ∂ahb
μ

)
+ 1

4

(
hσa∂σ hb

μ − hσb∂σ ha
μ

+hbσ ∂ahσμ − haσ ∂bhσμ

)

−1

8

(
haσ ∂μhb

σ − hbσ ∂μha
σ

)
− 1

8

(
kaσ ∂μkb

σ

−kbσ ∂μka
σ

)
+ 1

4

(
kσa∂σ kb

μ − kσb∂σ ka
μ

+kbσ ∂akσμ − kaσ ∂bkσμ

)
+ · · · (133)

and

�(2)ab
μ = 1

2

(
∂bka

μ − ∂akb
μ

)
+ 1

4

(
hσa∂σ kb

μ − hσb∂σ ka
μ

+hbσ ∂akσμ − haσ ∂bkσμ

)

−1

8

(
haσ ∂μkb

σ − hbσ ∂μka
σ

)
− 1

8

(
kaσ ∂μhb

σ

−kbσ ∂μha
σ

)
+ 1

4

(
kσa∂σ hb

μ − kσb∂σ hb
μ

+kbσ ∂ahσμ − kaσ ∂bhσμ

)
+ · · · . (134)

In particular,

εμabc�
(1)
μab = −1

4
εμabc (hσ

a ∂bhμσ + kσ
a ∂bkμσ

)+ · · · ,
(135)

εμabc�
(2)
μab = −1

4
εμabc (hσ

a ∂bkμσ + kσ
a ∂bhμσ ) + · · · .

(136)

Up to order two in h and k we have

S =
∫

d4x ψ |Ḡ| 1
4 (êm

a − γ5ĉm
a )

[
i

2
γ a ↔

∂ m
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−1

4
εabcd

(
�

(1)
mbcγdγ5 + �

(2)
mbcγd

)]
|G| 1

4 ψ

=
∫

d4x

[
i

2
�γ m ↔

∂ m� − i

4
�(hm

a − γ5km
a )γ a ↔

∂ m�

+ 3i

16
�
(
(k2)m

a + (h2)m
a − γ5(hk + kh)m

a

)
γ a ↔

∂ m�

+ 1

16
εmabc�

((
hσ

a ∂bhmσ + kσ
a ∂bkmσ

)
γcγ5

+(hσ
a ∂bkmσ + kσ

a ∂bhmσ )γc
)
� + 1

8
εabcd�(hm

a

−γ5km
a ) (∂chbmγdγ5 + ∂ckbmγd) �

]
+ · · ·

=
∫

d4x
[ i

2
�γ m ↔

∂ m� − i

4
�(hm

a −γ5km
a )γ a ↔

∂ m�

+ 3i

16
�
(
(k2)m

a + (h2)m
a − γ5(hk + kh)m

a

)
γ a ↔

∂ m�

− 1

16
εmabc�

((
hσ

a ∂bhmσ + kσ
a ∂bkmσ

)
γcγ5

+(hσ
a ∂bkmσ + kσ

a ∂bhmσ )γc
)
�

]
+ · · · (137)

Here we do not report explicitly the terms cubic in h and k:
they contains three powers of h and/or k multiplied by �γμ�

or �γμγ5� and possibly by the ε tensor. They contain one
single derivative, applied to either h, k or �. These cubic
terms will not affect our results.

7.3 Feynman rules

For a derivation of the Feynman rules in this case see B.3 and
B.4. The fermion propagator is

i

/p + iε
. (138)

The two-fermion–h-graviton vertex is (V f f h):

− i

8

[
(p + p′)μγν + (p + p′)νγμ

]
. (139)

The axial two-fermion–k-graviton vertex is (V f f k)

− i

8

[
(p + p′)μγν + (p + p′)νγμ

]
γ5 (140)

(p incoming, p′ outgoing). There are six two-fermion–two-
graviton vertices:

(1) V (1)
f f hh :

3i

64

[(
(p + p′)μγμ′ηνν′ + (p + p′)μγν′ηνμ′ + {μ ↔ ν})

+ ((p + p′)μ′γμηνν′ + (p + p′)μ′γνημν′ + {μ′ ↔ ν′})] ,
(141)

(2) V (2)
f f kk :

3i

64

[ (
(p + p′)μγμ′ηνν′ + (p + p′)μγν′ηνμ′ + {μ ↔ ν})

+ ((p + p′)μ′γμηνν′ + (p + p′)μ′γνημν′ + {μ′ ↔ ν′})
]
,

(142)

(3) V (3)
f f hk :

3i

64

[ (
(p + p′)μγμ′ηνν′ + (p + p′)μγν′ηνμ′ + {μ ↔ ν})

+ ((p + p′)μ′γμηνν′ + (p + p′)μ′γνημν′ + {μ′ ↔ ν′})
]
γ5,

(143)

(4) V (1)ε
f f hh :

1

64
tμνμ′ν′κλ (k − k′)λγ κ γ5 (144)

where t is the tensor (34),
(5) V (2)ε

f f kk :

1

64
tμνμ′ν′κλ (k − k′)λγ κ γ5, (145)

(6) V (3)ε
f f hk :

1

64
tμνμ′ν′κλ (k − k′)λγ κ . (146)

The graviton momenta k, k′ are incoming.
As anticipated above, we dispense from writing down the

vertices with three h, k legs. For the purposes of this paper
it is possible to dispose of them with a general argument,
without entering detailed calculations.

7.4 Trace anomalies: a simplified derivation

We will now derive the odd parity trace anomalies in the
model (137), by considering only the triangle diagram con-
tributions and disregarding tadpoles and seagull terms. We
will justify later on this simplified procedure.

The overall effective action is

W [h, k] = W [0] +
∞∑

n,m=0

im+n−1

2n+mn!m!
∫ n∏

i=1

dxi hμi νi (xi )

×
m∏

j=1

dy j kλ j ρ j (y j )

·〈0|T T μ1ν1(x1) . . . T μnνn (xn)

×T λ1ρ1
5 (y1) . . . T λmρm

5 (ym)|0〉 (147)
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where, in the simplified version of this section, the T opera-
tors in the time-ordered amplitudes refer to the classical ones,
i.e.

T μν ≡ T μν

(0,0) = − i

4

(
ψγ μ

↔
∂νψ + μ ↔ ν

)
(148)

and

T μν
5 ≡ T μν

5(0,0) = i

4

(
ψγ5γ

μ
↔
∂νψ + μ ↔ ν

)
. (149)

The quantum Ward identities for the Weyl and axial Weyl
symmetry are obtained by replacing the classical e.m. tensor
expressions with the one-loop one-point functions in (129)
and (130)

T(x) ≡ 〈〈T μν〉〉gμν

+〈〈T μν
5 〉〉 fμν = 0, i.e. 〈〈T μ

μ 〉〉 + · · · = 0 (150)

and

T5(x) ≡ 〈〈T μν〉〉 fμν

+〈〈T μν
5 〉〉gμν = 0, i.e. 〈〈T μ

5μ〉〉 + · · · = 0. (151)

In the present simplified setup the relevant one-loop one-
point functions are

〈〈T μν(x)〉〉 =
∞∑

n,m=0

im+n

2n+mn!m!
∫ n∏

i=1

dxi hμi νi (xi )

m∏
j=1

dy j kλ j ρ j (y j )

·〈0|T T μν(x)T μ1ν1 (x1) . . . T μnνn (xn)

×T λ1ρ1
5 (y1) . . . T λmρm

5 (ym)|0〉 (152)

and

〈〈T μν
5 (x)〉〉 =

∞∑
n,m=0

im+n

2n+mn!m!
∫ n∏

i=1

dxi hμi νi (xi )

m∏
j=1

dy j kλ j ρ j (y j )

·〈0|T T μν
5 (x)T μ1ν1 (x1) . . . T μnνn (xn)

×T λ1ρ1
5 (y1) . . . T λmρm

5 (ym)|0〉. (153)

In particular for the trace anomalies, at O(h2, hk, k2) level,
we have

〈〈T μ
μ (x)〉〉(2) = −1

8

∫
dx1dx2hμ1ν1(x1)hμ2ν2(x2)

×〈0|T T μ
μ (x)T μ1ν1(x1)T

μ2ν2(x2)|0〉
−1

4

∫
dx1dyhμ1ν1(x1)kλρ(y)〈0|

×T T μ
μ (x)T μ1ν1(x1)T

λρ
5 (y)|0〉

−1

8

∫
dy1dy2kλ1ρ1(y1)kλ2ρ2(y2)〈0|

×T T μ
μ (x)T λ1ρ1

5 (y1)T
λ2ρ2
5 (y2)|0〉 (154)

and

〈〈T5μ
μ(x)〉〉(2) = −1

8

∫
dx1dx2hμ1ν1(x1)hμ2ν2(x2)〈0|

×T T5μ
μ(x)T μ1ν1(x1)T

μ2ν2(x2)|0〉
−1

4

∫
dxdyhμ1ν1(x1)kλρ(y)〈0|

×T T5μ
μ(x)T μ1ν1(x1)T

λρ
5 (y)|0〉

−1

8

∫
dy1dy2kλ1ρ1(y1)kλ2ρ2(y2)〈0|

×T T5μ
μ(x)T λ1ρ1

5 (y1)T
λ2ρ2
5 (y2)|0〉. (155)

It is clear that only the terms containing an odd number of
T5 will contribute to the odd parity trace anomaly.

The three-point functions (154) and (155) are given by the
ordinary triangle diagrams. All such diagrams give the same
contribution

∼
(

k1 ·k2 tμνμ′ν′λρ − t (21)

μνμ′ν′λρ

)
kλ

1 kρ
2 (156)

where

t (21)

μνμ′ν′κλ
= k2μk1μ′ενν′κλ + k2νk1ν′εμμ′κλ

+k2μk1ν′ενμ′κλ + k2νk1μ′εμν′κλ. (157)

Upon Fourier-anti-transforming and replacing in (154) we
get

〈〈T μ
μ (x)〉〉(2) = −2Nεμνλρ

(
∂μ∂σ hτ

ν ∂λ∂τ kσ
ρ

−∂μ∂σ hτ
ν ∂λ∂

σ kτρ

)
(158)

and in (155) we get

〈〈T5μ
μ(x)〉〉(2) = −2N

[1

2
εμνλρ

(
∂μ∂σ hτ

ν ∂λ∂τ hσ
ρ

−∂μ∂σ hτ
ν ∂λ∂

σ hτρ

)
+1

2
εμνλρ

(
∂μ∂σ kτ

ν ∂λ∂τ kσ
ρ − ∂μ∂σ kτ

ν ∂λ∂
σ kτρ

) ]

(159)

where N is the constant that appears in front of the Pon-
tryagin anomaly in [1], i.e. N = i

768π2 . Covariantizing these
expressions we get

�μ
μ ≡

∫
ω〈〈T μ

μ (x)〉〉 = N
∫

ωεμνλρR(1)
μν

στR(2)
λρστ , (160)

�5μ
μ ≡

∫
η〈〈T5μ

μ(x)〉〉 = N

2

∫
η εμνλρ

(
R(1)

μν
στR(1)

λρστ

+R(2)
μν

στR(2)
λρστ

)
. (161)

The important remark is now that the odd parity trace
anomaly, in an ordinary theory of Weyl fermions, can be
calculated using the above theory of Dirac fermions coupled
to MAT gravity and setting at the end hμν → hμν

2 , kμν →
hμν

2 and ω = η, for left-handed Weyl fermions, and hμν →
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hμν

2 , kμν → − hμν

2 for right-handed ones. We will refer to
these as collapsing limits.

7.5 What happens when hμν → hμν

2 , kμν → hμν

2 ?

Let us show that in the collapsing limit hμν → hμν

2 , kμν →
hμν

2 we have the following results:

�(1)λ
μν → 1

2
γ λ
μν, �(2)λ

μν → 1

2
γ λ
μν. (162)

This is evident in the approximate expressions (90) and (91),
but it can be proved in general. To order n in the expansion
of h and k of �

(1)λ
μν we are going to have a first term of order

n in h alone, then

(
n
2

)
of order n − 2 in h and order 2 in k,

then

(
n
4

)
of order n − 4 in h and order 4 in k, and so on,

up to order [n/2] in h. In the collapsing limit, all these terms
collapse to the first term of order n in h divided by 2n . In
total they are

[n/2]∑
k=0

(
n
2k

)
= 2n−1. (163)

Therefore they give the order n term in h of γ λ
μν divided by

2. A similar proof holds for �
(2)λ
μν .

Looking at the definition (92) of the curvaturesR(1)
μνλ

ρ and

R(2)
μνλ

ρ one easily sees that in the collapsing limit

R(1)
μνλ

ρ → 1

2
Rμνλ

ρ, R(2)
μνλ

ρ → 1

2
Rμνλ

ρ, (164)

where Rμνλ
ρ is the curvature of gμν .

In a similar way, using (133) and (134), one can show that

�(1)ab
μ → 1

2
ωab

μ , �(2)ab
μ → 1

2
ωab

μ . (165)

Notice also that in the collapsing limit

gμν + fμν = ημν + hμν + kμν → gμν

gμν − fμν = ημν + hμν − kμν → ημν, (166)

so that

√|G| → 1 − γ5

2
+ 1 + γ5

2

√|g|, (167)

and

Ea
m → δa

m
1 − γ5

2
+ ea

m
1 + γ5

2
,

Êm
a → δm

a
1 − γ5

2
+ êm

a
1 + γ5

2
. (168)

From the above follows that the action (137) tends to

S =
∫

d4x i�γ a Êm
a (∂m + 1

2
�m)�

−→
∫

d4x

[
i�γ m 1 − γ5

2
∂m�

+i�γ aêm
a

(
∂m + 1

2
ωm

)
1 + γ5

2
�

]
. (169)

As for the opposite handedness one notices that, if hμν →
hμν

2 , kμν → − hμν

2 , we have

�(1)ab
μ → 1

2
ωab

μ , �(2)ab
μ → −1

2
ωab

μ , (170)

and in (168) the sign in front of γ5 is reversed. Therefore the
limiting action is

S′ =
∫

d4x

[
i�γ a 1 + γ5

2
∂a�

+i�γ aêm
a

(
∂m + 1

2
ωm

)
1 − γ5

2
�

]
. (171)

We recall that γ a is the flat (non-dynamical) gamma matrix.
Concerning the energy-momentum tensor, from the defi-

nitions (125) and (126), in the collapsing limit both T μν and
T μν

5 become

T
′μν(x) = 4

δS′

δhμν(x)
. (172)

As a consequence (150) and (151) collapse to the same
expression,

T(x) → 〈〈T ′μν〉〉gμν ≡ T′(x) (173)

and

T5(x) → 〈〈T ′μν〉〉gμν ≡ T′(x), (174)

that is, there is only one trace Ward identity.

7.6 The Pontryagin anomaly

As pointed out above the odd parity trace anomaly in an
ordinary theory of Weyl fermions can be calculated, to first
order, using the above theory of Dirac fermions coupled to
MAT gravity and calculating the collapsing limit of the Weyl
anomaly for a Dirac fermion coupled to MAT gravity. The
collapsing limit of the relevant action reproduces the action
for Weyl fermions

S′ =
∫

d4x
√|g|

[ i

2
ψ Lγ m ↔

∂ mψL − i

4
ωμabcψLγcγ5ψL

]

(175)

up to a right-handed kinetic term, which is, however, harm-
less due to the presence of the PL projector in the vertices.
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Inserting the replacements into either (160) or (161) we find

T′(x) = N

4
εμνλρ Rμν

στ Rλρστ . (176)

This is not yet the correct result for one must take into account
the different combinatorics in (147) and in

W [h] = W [0] +
∞∑

n=0

in−1

2nn!
∫ n∏

i=1

dxi hμi νi (xi )〈0|

×T T μ1ν1(x1) · · · T μnνn (xn)|0〉, (177)

which is appropriate for (175).9 This amounts to multiplying
(176) by a factor of 2. Therefore, finally the anomaly is

T(x) = N

2
εμνλρ Rμν

στ Rλρστ , (178)

which is the Pontrygin anomaly already found.
In the case of right-handed fermions the anomaly is the

same, but with reversed sign. Thus the odd trace anomaly for
Dirac fermions vanishes. This is confirmed by the following
subsection.

7.7 Odd trace anomaly in the Dirac and Majorana case

From the results (160) and (161) we can draw other conclu-
sions. The action (122) reduces to the usual Dirac action if
we set fμν = 0, and to the Majorana action if ψ satisfies the
Majorana condition. From (160) we have the confirmation
that the odd trace anomaly of these theories vanishes. But we
also see that in both cases there is an anomaly in the axial
energy-momentum tensor.

�5μ
μ = N

2

∫
η εμνλρ Rμν

στ Rλρστ (179)

for the Dirac case and 1
2 of it in the Majorana case. This is a

new result. This anomaly is the analog in the trace case of the
Kimura–Delbourgo–Salam anomaly for the axial current.

8 Odd trace anomalies (the complete calculation)

Now we would like to justify the assumption made above,
according to which only triangle diagrams provide a non-
vanishing contribution to the odd trace anomaly. The com-
plete calculation requires taking into account all the tadpoles
and seagull terms that arise from the action (122). We start
with the quantum Ward identity (150) and (151).

9 The factor 1
2n in the RHS must be properly interpreted. When inserting

the results for the n-point functions in (177), one should recall that the
vertex (139) contains already a 1

2 factor in it with respect to the e.m.

tensor: symbolically we could write V f f h = 1
2 T̃ , where T̃ is the Fourier

transform of the e.m. tensor with fields replaced by corresponding plane
waves. A simple practical recipe is to just forget factor 1

2n in (177), as
was done, somewhat sloppily, in [1]. The same holds for Eq. (147).

8.1 Trace Ward indentity

We need to expand this Ward identity in series of h and k. The
expanded versions is written down in Appendix B.5. Since
eventually we are interested only in the odd terms we will
drop all the terms that we already know are even or vanish
(the vev of T μν

(0,0)(x) and T μν

5(0,0)(x), the two-point functions
of the em and axial em tensor, as well as the vev of the second
and third derivatives of S). In this way the WI’s get simplified
as follows:

T(1,1)(x, x1, y1) ≡ T(1,1)
μμ1ν1λ1ρ1
μ (x, x1, y1) = 0, (180)

T(2,0)(x, x1, x2) ≡ T(2,0)
μμ1ν1μ2ν2
μ (x, x1, x2) = 0, (181)

T(0,2)(x, y1, y2) ≡ T(0,2)
μλ1ρ1λ2ρ2
μ (x, y1, y2) = 0 (182)

· · · ,

and

T5(1,1)(x, x1, y1) ≡ T5(1,1)
μμ1ν1λ1ρ1
μ (x, x1, y1) = 0, (183)

T5(2,0)(x, x1, x2) ≡ T5(2,0)
μμ1ν1μ2ν2
μ (x, x1, x2) = 0, (184)

T5(0,2)(x, y1, y2) ≡ T5(0,2)μ
μλ1ρ1λ2ρ2(x, y1, y2) = 0 (185)

· · · .
These are the Ward identities in the absence of anomalies,
but we expect the RHSs of all these identities to be in fact
different from zero at one-loop. The odd parity anomaly can
be present only in the RHSs of (180), (184) and (185): the
remaining two cannot contain the ε tensor linearly. After
such a repeated trimming, the relevant WI for our purposes
are (180 ,184) and (185), and the terms that need to be closely
scrutinized are

T μνμ1ν1λ1ρ1
(1,1) (x, x1, y1)

= −〈0|T T μν

(0,0)(x)T μ1ν1
(0,0) (x1)T

λ1ρ1
5(0,0)(y1)|0〉

+4i〈0|T T λρ1
5(0,0)(y1)

δ2S

δhμν(x)δhμ1ν1(x1)
|0〉

+4i〈0|T T μ1ν1
(0,0) (x1)

δ2S

δkλ1ρ1(y1)δhμν(x)
|0〉

+4i〈0|T T μν

(0,0)(x)
δ2S

δkλ1ρ1(y1)δkμ1ν1(x1)
|0〉, (186)

together with

T λρμ1ν1μ2ν2
5(2,0) (x, x1, x2)

= −〈0|T T λρ

5(0,0)(x)T μ1ν1
(0,0) (x1)T

μ2ν2
(0,0) (x2)|0〉

+4i〈0|T T μ1ν1
(0,0) (x1)

δ2S

δkλρ(x)δhμ2ν2(x2)
|0〉

+4i〈0|T T μ2ν2
(0,0) (x2)

δ2S

δhμ1ν1(x1)δkλρ(x)
|0〉

+4i〈0|T T λρ

5(0,0)(x)
δ2S

δhμ1ν1(x1)δhμ2ν2(x2)
|0〉 (187)
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and

T λρλ1ρ1λ2ρ2
5(0,2) (x, y1, y2)

= −〈0|T T λρ

5(0,0)(x)T λ1ρ1
5(0,0)(y1)T

λ2ρ2
5(0,0)(y2)|0〉

+4i〈0|T T λ1ρ1
5(0,0)(y1)

δ2S

δkλρ(x)δkλ2ρ2(y2)
|0〉

+4i〈0|T T λ2ρ2
5(0,0)(y2)

δ2S

δkλ1ρ1(y1)δkλρ(x)
|0〉

+4i〈0|T T λρ

5(0,0)(x)
δ2S

δkλ1ρ1(y1)δkλ2ρ2(y2)
|0〉. (188)

The terms above that contain the second derivative of S are
bubble diagrams where one vertex has two external h and/or
k graviton lines. These diagrams are similar to those already
met above and in [1], and can be shown to similarly vanish;
see Appendices C.1.1 and C.1.2. Therefore we are left with

T(1,1)(x, x1, y1) = −〈0|T T(0,0)μ
μ(x)T μ1ν1

(0,0) (x1)T λ1ρ1
5(0,0)(y1)|0〉,

(189)

T5(2,0)(x, x1, x2) = −〈0|T T5(0,0)
λ
λ(x)T μ1ν1

(0,0) (x1)T μ2ν2
(0,0) (x2)|0〉,

(190)

T5(0,2)(x, y1, y2) = −〈0|T T5(0,0)
λ
λ(x)T λ1ρ1

5(0,0)(y1)T λ2ρ2
5(0,0)(y2)|0〉,

(191)

which are the intermediate results already obtained above.
From this point on the calculation proceeds as in Sect. 7.4.

9 Conclusion

In this paper we have dealt with two subjects: the odd parity
trace anomaly in chiral fermion theories in a 4d curved back-
ground and the introduction of an axial ’metric’ beside the
familiar gravity metric. We have recalculated the first with
the Feynman diagram method in a more complete way, by
including in the computation also tadpole and seagull terms.
We have verified that the latter do not modify the result of
[1]. To do so we have also recalculated the Ward identity
for diffeomorphims. In this paper we have constantly been
using DR, leaving to a future investigation the discussion of
other regularizations. The other important topic of this paper
is the introduction of MAT (metric-axial-metric) gravity and
the relevant formalism. MAT gravity may have of course
an autonomous development and could be studied as a new
bimetric model, with the new characteristics that it inter-
acts also axially with fermions. We postpone this analysis to
a future work. In this paper we have utilized MAT gravity
in order to disentangle the thorny issue of the path integral
measure in a theory of chiral fermions. In fact MAT gravity
interact naturally with Dirac fermions. We have shown that
one can compute the trace anomalies of a theory of Dirac

fermions coupled to a background MAT gravity, and then
recover the results for a chiral fermion theory coupled to
ordinary gravity by simply taking a (smooth) limit. We have
shown that in this way one obtains the same results as in [1].

Finally, let us remark that in this paper we did not ver-
ify the Ward identity for two types of diffeomorphisms in
MAT background, much as was done in Sect. 4. From con-
solidated experience we believe that this will not modify the
trace anomalies of the model, but the problem is interesting
in itself. Can there be anomalies of the Einstein–Lorentz type
in one of the Ward identities? This is an intriguing problem
we leave for the future.

We are aware that the result of the present and previous
papers contradicts a consolidated wisdom in the literature.
Therefore we do not believe our result is completely settled.
As we have already pointed out, further investigations are
necessary in order to confirm or disprove it.
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Appendices

A The triangle diagram

In this appendix we derive in more detail the result of [1].
Employing the Feynman rules of the free chiral fermion cou-
pled to an external gravitational field, the contribution from
the triangle diagram is expressed as

Tμνμ′ν′(k1, k2) =
∫

d4 p

(2π)4 Tr

{
i

8

[
(2p − k1)μγν

+(μ ↔ ν)]

(
1 + γ5

2

)
i

(/p − /k1) + iε

× i

8

[
(2p − 2k1 − k2)μ′γν′

+(μ′ ↔ ν′)
] (1 + γ5

2

)
i

(/p − /k1 − /k2) + iε

× i

4
(2/p − /k1 − /k2)

(
1 + γ5

2

)
i

/p + iε

}
.

(192)
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Using the properties of the gamma matrices, one obtains10

Tμνμ′ν′(k1, k2) = − 1

256

∫
d4 p

(2π)4 Tr

×
{[

/p

p2 (2p − k1)μγν + (μ ↔ ν)

]

× (/p − /k1)

(p − k1)2

[
(2p − 2k1 − k2)μ′γν′

+ (μ′ ↔ ν′)
] (/p − /k1 − /k2)

(p − k1 − k2)2

× (2/p − /k1 − /k2)

(
1 + γ5

2

)}
. (193)

Clearly, such an integral is ultraviolet divergent. In order to
proceed with the computation, we employ dimensional reg-
ularization, where additional components are added to the
momentum, namely, p → p + �, where � = (�4, . . . , �n−4).
This implies, in particular,

γ μ pμ −→ γ μ pμ + γ μ̄�μ̄, (194)

with μ̄ ∈ {4, . . . , n − 4}. Hence, Eq. (193) is replaced by

Tμνμ′ν′(k1, k2)

= − 1

256

∫
d4 p

(2π)4

∫
dn−4�

(2π)n−4 Tr

×
{[

/p + /�

p2 − �2 (2p − k1)μγν + (μ ↔ ν)

]
(/p + /� − /k1)

(p − k1)2 − �2

× [
(2p − 2k1 − k2)μ′γν′ + (μ′ ↔ ν′)

]

× (/p + /� − /k1 − /k2)

(p − k1 − k2)2 − �2 (2/p + 2/� − /k1 − /k2)︸ ︷︷ ︸
(∗)

×
(

1 + γ5

2

)}
. (195)

Equation (195) is now regularized and we can continue with
the computation of the diagram. In order to simplify our anal-
ysis a bit, we ignore the identity in the projector (1 + γ5)/2
since we are concerned with the parity odd part contribution
of the diagram, which is encoded in the γ5 sector. Also, we
omit the symmetrizations in (μ ↔ ν) and in (μ′ ↔ ν′) for
the time being and reintroduce them later on.

Let us take the term (∗) and define q = k1+k2. It is simple
to check that

(∗) = (/p + /� − /q)

(p − q)2 − �2 (2/p + 2/� − /q)

= 1 + /p − /�

/p + /� − /q
+ 2/�

/p + /� − /q
, (196)

10 We have dropped the iε factor in the denominators, for convenience.

and plugging it into Eq. (195), one ends up with

Tμνμ′ν′(k1, k2) = T (1)

μνμ′ν′(k1, k2) + T (2)

μνμ′ν′(k1, k2)

+T̃μνμ′ν′(k1, k2), (197)

with

T (1)

μνμ′ν′ (k1, k2) = − 1

256

∫
d4 p

(2π)4

∫
dn−4�

(2π)n−4

×Tr

[
/p + /�

p2 − �2 (2p − k1)μγν

(/p + /� − /k1)

(p − k1)2 − �2

×(2p − 2k1 − k2)μ′γν′
γ5

2

]
,

T (2)

μνμ′ν′ (k1, k2) = − 1

256

∫
d4 p

(2π)4

∫
dn−4�

(2π)n−4

×Tr

[
/p + /�

p2 − �2 (2p − k1)μγν

(/p + /� − /k1)

(p − k1)2 − �2

× (2p − 2k1 − k2)μ′γν′
(/p − /�)

/p + /� − /q

γ5

2

]
,

T̃μνμ′ν′ (k1, k2) = − 1

256

∫
d4 p

(2π)4

∫
dn−4�

(2π)n−4

×Tr

[
/p + /�

p2 − �2 (2p − k1)μγν

(/p + /� − /k1)

(p − k1)2 − �2

× (2p − 2k1 − k2)μ′γν′
/�

/p + /� − /q
γ5

]
.

(198)

We detail the computation of each contribution T (1), T (2)

and T̃ in the following lines.

A.1 T (1)

μνμ′ν′(k1, k2)

The contribution T (1) can be expressed as

T (1)

μνμ′ν′(k1, k2) = − 1

256

∫
d4 p

(2π)4

×
∫

dn−4�

(2π)n−4

(2p − k1)μ(2p − 2k1 − k2)μ′

2(p2 − �2)
[
(p − k1)2 − �2

]
× Tr

[
(/p + /�)γν(/p + /� − /k1)γν′γ5

]
︸ ︷︷ ︸

4i pαkβ
1 εανβν′

. (199)

Employing the Feynman parametrization, Eq. (199) is written
as

T (1)

μνμ′ν′ (k1, k2) = − i

128

∫
d4 p

(2π)4

∫
dn−4�

(2π)n−4

×
∫ 1

0
dx

(2p−k1)μ(2p − 2k1−k2)μ′{[
(p − k1)2 − �2

]
x + (1−x)(p2 − �2)

}2 pαkβ
1 εανβν′ .

(200)

Performing the shift p → p + xk1 and taking into account
that just even powers of p in the numerator will result on
non-vanishing contributions to T (1), one obtains
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T (1)

μνμ′ν′ (k1, k2)

= i

128

∫ 1

0
dx
∫

dn−4�

(2π)n−4

×
∫

d4 p

(2π)4

2pμ′ (1 − 2x)k1μ + 2pμ [2(1 − x)k1 + k2]μ[
p2 + x(1 − x)k2

1 − �2
]2 pαkβ

1 εανβν′ .

(201)

Making use of Lorentz symmetry, one can make the follow-
ing replacement:

pμ pν −→ 1

4
ημν p2, (202)

which gives rise to

T (1)

μνμ′ν′ (k1, k2)

= i

256

∫ 1

0
dx
∫

dn−4�

(2π)n−4

×
∫

d4 p

(2π)4

δα
μ′ (1 − 2x)k1μ + δα

μ [2(1 − x)k1 + k2]μ′[
p2 + x(1 − x)k2

1 − �2
]2 p2kβ

1 εανβν′ .

(203)

After taking into account the contraction of the Kronecker
deltas with the ε-tensor and imposing the symmetrization
of (μ ↔ ν) and (μ′ ↔ ν′) one immediately sees that the
contribution from T (1) vanishes.

A.2 T (2)

μνμ′ν′(k1, k2)

T (2)

μνμ′ν′ (k1, k2)

= 1

256

∫
d4 p

(2π)4

∫
dn−4�

(2π)n−4

(2p + k1)μ(2p − k2)μ′

2(p2 − �2)
[
(p − k2)2 − �2

]
× Tr

[
γν(/p + /�)γν′ (/p + /� − /k2)γ5

]
︸ ︷︷ ︸

4i pαkβ
2 εναν′β

. (204)

As before, one employs the Feynman parametrization and in
very strict analogy, perform the shift p → p + xk2. This
renders

T (2)

μνμ′ν′(k1, k2) = i

128

∫ 1

0
dx
∫

dn−4�

(2π)n−4

×
∫

d4 p

(2π)4

(2p + k1 + 2xk2)μ(2p − (1 − x)k2)μ′[
p2 − �2−x(x−1)k2

2

]2
× pαkβ

2 εναν′β. (205)

Collecting just the even powers of p in the numerator of (205)
and applying Eq. (202), one immediately obtains

T (2)

μνμ′ν′(k1, k2) = i

256

∫ 1

0
dx
∫

dn−4�

(2π)n−4

×
∫

d4 p

(2π)4

δα
μ(x−1)k2μ′+δα

μ′(k1 + 2xk2)μ[
p2 − �2 − x(x − 1)k2

2

]2 kβ
2 εναν′β.

(206)

For the same reasons as described in the previous subsection,
after symmetrizations, the contribution from T (2) vanishes.

A.3 T̃μνμ′ν′(k1, k2)

T̃μνμ′ν′(k1, k2) = − 1

256

∫
d4 p

(2π)4

∫
dn−4�

(2π)n−4

× (2p − k1)μ(2p − 2k1 − k2)μ′

(p2 − �2)
[
(p − k1)2 − �2

] [
(p − q)2 − �2

]
× Tr

[
(/p + /�)γν(/p + /� − /k1)γν′(/p + /� − /q)/�γ5

]
︸ ︷︷ ︸

4ikα
1 kβ

2 εναν′β

. (207)

The Feynman parametrization leads to

T̃μνμ′ν′(k1, k2) = − i

32
kα

1 kβ
2 εναν′β

∫
d4 p

(2π)4

∫
dn−4�

(2π)n−4

∫ 1

0
dx

×
∫ 1−x

0
dy

(2p − k1)μ(2p − 2k1 − k2)μ′{[
(p − k1)2 − �2

]
x + [

(p − q)2 − �2
]

y + (p2 − �2)(1 − x − y)
}3 �2. (208)

Making the shift p → p + xk1 + yq and a few algebraic
manipulations, Eq. (208) becomes

T̃μνμ′ν′(k1, k2) = − i

32
kα

1 kβ
2 εναν′β

∫ 1

0
dx
∫ 1−x

0
dy
∫

d4 p

(2π)4

×
∫

dn−4�

(2π)n−4

(2p + 2xk1 + 2yq − k1)μ(2p + 2xk1 + 2yq − 2k1 − k2)μ′[
p2 − �2 + 2k1 · k2 y(1 − y − x)

]3 �2. (209)
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Taking the numerator of (209), collecting just those terms
which contribute to the trace anomaly and employing Eq.
(202), Eq. (209) becomes

T̃μνμ′ν′(k1, k2) = − i

32
kα

1 kβ
2 εναν′β

∫ 1

0
dx
∫ 1−x

0
dy
∫

d4 p

(2π)4

×
∫

dn−4�

(2π)n−4

p2ημμ′ + 4y(x + y − 1)k1μ′k2μ[
p2 − �2 + 2k1 · k2 y(1 − y − x)

]3 �2.

(210)

To make sense of the integrals present in (210), we make
a Wick rotation k0 → ik0

E for any momentum kμ: so, for
instance, in the previous integral p2 → −p2

E , etc. So (210)
is replaced by

T̃μνμ′ν′(k1, k2) = 1

32
kα

1 kβ
2 εναν′β

∫ 1

0
dx
∫ 1−x

0
dy
∫

d4 p

(2π)4

×
∫

dn−4�

(2π)n−4

p2ημμ′ − 4y(x + y − 1)k1μ′k2μ[
p2 + �2 + 2k1 · k2 y(1 − y − x)

]3 �2,

(211)

and we dispense from explicitly indicating the Euclidean
momenta whenever it is not strictly necessary. Now the inte-
grals are well defined and we can use the following results:∫

dn−4�

(2π)n−4

�2

[
p2 + 2k1 · k2 y(1 − y − x) + �2

]3
= 1

(4π)(n−4)/2

n − 4

4

× 1[
p2 + 2k1 · k2 y(1 − y − x)

]4− n
2
�
(

4 − n

2

)
,

∫
d4 p

(2π)4

1[
p2 + 2k1 · k2 y(1 − y − x)

]4− n
2

= 1

(4π)2

�
(
2 − n

2

)
�
(
4 − n

2

)
(

1

2k1 · k2 y(1 − y − x)

)2− n
2

,

∫
d4 p

(2π)4

p2

[
p2 + 2k1 · k2 y(1 − x − y)

]4− n
2

= 2

(4π)2

�
(
1 − n

2

)
�
(
4 − n

2

)
(

1

2k1 · k2 y(1 − y − x)

)1− n
2

.

(212)

Using (212) and performing the integration over the Feynman
parameters (x, y) and returning to the Lorentzian metric, one
obtains

T̃μνμ′ν′(k1, k2)

= 1

6144π2 kα
1 kβ

2 ενν′αβ

(
ημμ′k1 · k2 − k1μ′k2μ

)
. (213)

Of course, as previously mentioned, one should symmetrize
Eq. (213) with respect to (μ ↔ ν) and (μ′ ↔ ν′). Then
(213) becomes

T̃μνμ′ν′(k1, k2)

= 1

6144π2 kα
1 kβ

2

(
k1 · k2tμνμ′ν′αβ − t (21)

μνμ′ν′αβ

)
, (214)

The tensors t and t (21) have been defined in (34) and (157).
On top of that one should add the contribution from the

“cross diagram”, namely, the contribution coming from the
simultaneous exchanges (k1 ↔ k2, μ ↔ μ′, ν ↔ ν′).
Hence, the sum of (214) with the cross diagram contribu-
tion gives rise to

T̃ (tot)
μνμ′ν′(k1, k2)

= 1

3072π2 kα
1 kβ

2

(
k1 · k2tμνμ′ν′αβ − t (21)

μνμ′ν′αβ

)
. (215)

B Derivation of Feynman rules

B.1 Ordinary gravity

Consider a free theory coupled to ordinary gravity. We
assume that the action has the expansion

S =
∞∑

n=0

Sn ≡ S0 +
∞∑

n=1

∫ n∏
i=1

dxi

× 1

n!
δn S

δhμ1ν1(x1) . . . δhμnνn (xn)

∣∣∣∣
h=0

×hμ1ν1(x1) . . . hμnνn (xn)

= S0 +
∫

dx
δS

δhμν(x)

∣∣∣∣
h=0

hμν(x)

+1

2

∫
dx1dx2

δ2S

δhμ1ν1(x1)δhμ2ν2(x2)

∣∣∣∣
h=0

×hμ1ν1(x1)hμ2ν2(x2) + · · · . (216)

The e.m. tensor is defined as

T μν = 2√
g

δS

δgμν

, Tμν = − 2√
g

δS

δgμν
. (217)

In the following we have in mind the free fermion theory in
4d defined by (23), and set gμν = ημν + hμν .

We need the expansion

√|g| = 1 + 1

2
(tr h) + 1

8
(tr h)2 − 1

4
(tr h2)

−1

8
(tr h)(tr h2) + 1

48
(trh)3 + 1

6
(trh3) + · · ·

≡
∑
n=0

On(h), (218)

1√
g

= 1 − 1

2
(tr h) + 1

8
(tr h)2 + 1

4
(tr h2)

−1

8
(tr h)(tr h2) − 1

48
(trh)3 − 1

6
(trh3) + · · ·
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≡
∑
n=0

Ôn(h) (219)

where by h is meant the matrix hμν , and O0(h) =
1, O1(h) = 1

2 (tr h), . . .. Next we consider the complete
expansion of (23) in powers of h, like (38). Now, using (217),
one can write

T μν(x) = 2√
g

(
δS

δhμν(x)

∣∣∣∣
h=0

+
∫

dx2
δ2S

δhμν(x)δhμ2ν2(x2)

∣∣∣∣
h=0

hμ2ν2(x2)

+ 1

2

∫
dx2dx3

× δ3S

δhμν(x)δhμ2ν2(x2)δhμ3ν3(x3)

∣∣∣∣
h=0

× hμ2ν2(x2)hμ3ν3(x3) + · · ·
)

≡ T μν

(0) (x) + T μν

(1) (x) + · · · , (220)

which implies

T μν

(n) (x) =
n∑

m=0

Ôn−m(h(x))
2

m!

·
∫ m∏

i=1

dxi
δm+1S

δhμν(x)δhμ1ν1(x1) . . . δhμmνm (xm)

∣∣∣∣
h=0

×hμ1ν1(x1) . . . hμmνm (xm). (221)

So we can rewrite

Sn = 1

2n

∫
dx

(
n∑

m=1

On−m(h(x))T μν

(m−1)(x)

)
hμν(x).

(222)

For instance

S1 = 1

2

∫
dx T μν

(0) (x) hμν(x), (223)

S2 = 1

4

∫
dx

(
T μν

(1) (x) + 1

2
(tr h(x)) T μν

(0) (x)

)
hμν(x),

(224)

S3 = 1

6

∫
dx

(
T μν

(2) (x) + 1

2
(tr h(x)) T μν

(1) (x)

+1

8

(
(tr h(x))2 − 2(tr h2(x))

)
T μν

(0) (x)

)
hμν(x),

(225)

and

T μν

(0) (x) = 2
δS

δhμν(x)

∣∣∣∣
h=0

, (226)

T μν

(1) (x) = −(tr h(x))
δS

δhμν(x)

∣∣∣∣
h=0

+2
∫

dx1
δ2S

δhμν(x)δhμ1ν1(x1)

∣∣∣∣
h=0

hμ1ν1(x1), (227)

T μν

(2) (x) = 1

4

(
(tr h(x))2 + 2(tr h(x)2)

) δS

δhμν(x)

∣∣∣∣
h=0

−(tr h(x))

∫
dx1

δ2S

δhμν(x)δhμ1ν1(x1)

∣∣∣∣
h=0

hμ1ν1(x1)

+2
∫

dx1dx2
δ3S

δhμν(x)δhμ1ν1(x1)δhμ2ν2 (x2)

∣∣∣∣
h=0

×hμ1ν1(x1)hμ2ν2 (x2). (228)

Remark Since S = ∫ √|g|L, the derivatives of S in the pre-
vious formulas, when applied to

√|g|, will produce terms
∼ L which vanish on shell. These are contact terms. They
produce contraction of the Feynman diagrams whereby a
fermion internal line drops and the two endpoints collapse to
a single one. These are contact terms. They are not the only
ones. Other contact terms are produced by seagull vertices,
i.e. vertices with two fermion legs and two or more graviton
legs, by contracting the fermion legs with a propagator, thus
forming a fermion loop.

B.2 One-loop one-point function

Representing by φ the matter fields in the model, the one-
loop one-point function of T μν in the presence of a metric
gμν = ημν + hμν is

〈〈T μν(x)〉〉 =
∫

DφT μν(x) ei S[φ,h]

=
∫

Dφ
(

T μν

(0) (x) + T μν

(1) (x) + T μν

(2) (x) + · · ·
)

×ei(S0+S1+S2+··· )

=
∫

Dφ
[(

T μν

(0) (x) + T μν

(1) (x) + T μν

(2) (x) + · · ·
)

× ei(S1+S2+··· )] ei S0 . (229)

ei S0 has been singled out as the free part of the integration
measure. The rest of S (the interaction) is treated perturba-
tively.

Rearranging (229) order by order in h:

〈〈T μν(x)〉〉 =
∫

Dφ T μν

(0) (x) ei S0

+
∫

Dφ
(

i S1 T μν

(0) (x) + T μν

(1) (x)
)

ei S0

+
∫

Dφ

(
(i S2 − 1

2
S2

1 ) T μν

(0) (x) + i S1 T μν

(1) (x) + T μν

(2) (x)

)
ei S0
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+
∫

Dφ

(
(i S3 − S1S2 − i

3! S3
1 ) T μν

(0) (x) + (i S2 − 1

2
S2

1 ) T μν

(1) (x)

+i S1T μν

(2) (x) + T μν

(3) (x)
)

ei S0 + · · · . (230)

Next we introduce auxiliary external currents and couple
them to the free field in S0. For instance if the free fields are
ψ, ψ̄ , we introduce j, j̄ and add a term

〈〈T μν(x)〉〉[ j, j̄] =
∫

Dψ̄Dψ
(

· · · · · · · · ·
)

exp[i S0

+i
∫

( j̄ψ + ψ j)]

and set at the end j = j̄ = 0. At this point in
(

· · · · · · · · ·
)

one can replace ψ by δ

δ j̄
and ψ by − δ

δ j , so that the only

remaining dependence on ψ and ψ is in the factor exp[i S0 +∫
( j̄ψ + ψ j)]. Since the exponent is a quadratic expression,

one can formally integrate over ψ and ψ by completing the
square. This leads to an irrelevant infinite constant times

exp

[
−i
∫

j̄ P j

]
(231)

where P is the inverse of the kinetic differential operator in
S0, i.e. the propagator in configuration space. Finally

〈〈T μν(x)〉〉 =
[
T μν

(0) (x) exp

[
−i
∫

j̄ P j

]

+
(

i S1 T μν

(0) (x) + T μν

(1) (x)
)

exp

[
−i
∫

j̄ P j

]

+
(

(i S2 − 1

2
S2

1 ) T μν

(0) (x)

+i S1 T μν

(1) (x) + T μν

(2) (x)
)

exp

[
−i
∫

j̄ P j

]

+
(

(i S3 − S1S2 − i

3! S3
1) T μν

(0) (x)

+(i S2−1

2
S2

1 ) T μν

(1) (x)+i S1T μν

(2) (x)+T μν

(3) (x)

)

· exp

[
−i
∫

j̄ P j

] ]∣∣∣
j= j̄=0

+ · · · (232)

where all the ψ,ψ fields in T(n), Sn are understood to be
replaced by δ

δ j̄
and − δ

δ j , respectively. This is the final expres-

sion of the 1pt one-loop correlator from which the Feynman
rules are extracted. Equation (232) is thus rewritten as

〈〈T μν(x)〉〉 = 〈0|T μν

(0) (x)|0〉
+〈0|T

(
i S1 T μν

(0) (x) + T μν

(1) (x)
)

|0〉

+〈0|T
(

(i S2−1

2
S2

1 ) T μν

(0) (x)+i S1 T μν

(1) (x)+T μν

(2) (x)

)
|0〉,

+〈0|T
(

(i S3−S1S2− i

3! S3
1) T μν

(0) (x)+(i S2−1

2
S2

1 ) T μν

(1) (x)

+i S1T μν

(2) (x) + T μν

(3) (x)
)

|0〉
+ · · · , (233)

and the time-ordered amplitudes are computed by means of
Feynman diagrams.

B.3 MAT background

In this subsection the reference is to the expanded action
(137). We rewrite it as

S = S0 +
∑

n+m≥1

1

n!
1

m!
∫ n∏

i=0

m∏
j=0

dxi dy j

× δi+ j S

δhμ1ν1(x1) . . . δhμi νi (xi )δkλ1ρ1(1) . . . δkλ j ρ j (y j )

∣∣∣∣
h,k=0

×hμ1ν1(x1) . . . hμ j ν j (x j )kλ1ρ1(1) . . . kλ j ρ j (y j )

= S0 +
∫

dx
δS

δhμν(x)

∣∣∣∣
h,k=0

hμν(x)

+
∫

dy
δS

δkλρ(x)

∣∣∣∣
h,k=0

kλρ(y)

+1

2

∫
dx1dx2

δ2S

δhμ1ν1(x1)δhμ2ν2(x2)

∣∣∣∣
h,k=0

×hμ1ν1(x1)hμ2ν2(x2) + · · ·

≡
∞∑

n,m=0

Sn,m (234)

where S0 ≡ S0,0. As long as we differentiate S from the
right it functionally depends on the axial-complex variable
g + γ5 f . So the functional derivatives with respect to hμν

and kμν have to be understood as

δ

δhμν(x)
=
∫

d4x ′ δGλρ(x ′)
δhμν(x)

→
δ

δGλρ(x ′)
=

→
δ

δGμν(x)
,

(235)

δ

δkμν(x)
=
∫

d4x ′ δGλρ(x ′)
δkμν(x)

→
δ

Gλρ(x ′)
= γ5

→
δ

δGμν(x)
.

(236)

Now, going back to the definitions of T μν and T μν
5 , (123),

(125) and (126), one can see that, in the case when
√|G| is

absorbed in ψ we can write

T μν(x) = 2

(
δS

δhμν(x)

∣∣∣∣
h,k=0

+
∫

dx2
δ2S

δhμν(x)δhμ2ν2(x2)

∣∣∣∣
h,k=0

hμ2ν2(x2)

+
∫

dy
δ2S

δhμν(x)δkλρ(y)

∣∣∣∣
h,k=0

kλρ(y) + · · ·
)

= T μν

(0,0)(x) + T μν

(1,0)(x) + T μν

(0,1)(x) + · · · (237)
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and

T μν
5 (x) = 2

(
δS

δkμν(x)

∣∣∣∣
h,k=0

+
∫

dy2
δ2S

δkμν(x)δkμ2ν2(y2)

∣∣∣∣
h,k=0

kμ2ν2(y2)

+
∫

dy
δ2S

δkμν(x)δhλρ(y)

∣∣∣∣
h,k=0

hλρ(y) + · · ·
)

= T μν

5(0,0)(x) + T μν

5(0,1)(x) + T μν

5(1,0)(x) + · · · . (238)

Therefore

T μν

(n,m)(x) =
n∑

i=0

m∑
j=0

2

i ! j !
∫ n∏

i=1

m∏
j=1

dxi dy j

× δi+ j+1S

δhμν(x)δhμ1ν1 (x1) . . . δhμi νi (xi )δkλ1ρ1 (1) . . . δkλ j ρ j (y j )

∣∣∣∣
h,k=0

× hμ1ν1 (x1) . . . hμ j ν j (x j )kλ1ρ1 (1) . . . kλ j ρ j (y j ) (239)

and

T λρ

5(n,m)(x) =
n∑

i=0

m∑
j=0

2

i ! j !
∫ n∏

i=1

m∏
j=1

dxi dy j

× δi+ j+1S

δhμ1ν1 (x1) · · · δhμi νi (xi )δkλρ(x)δkλ1ρ1 (1) · · · δkλ j ρ j (y j )

∣∣∣∣
h,k=0

× hμ1ν1 (x1) · · · hμ j ν j (x j )kλ1ρ1 (1) · · · kλ j ρ j (y j ). (240)

So,

Sn,m = cn,m

(
1

2n

n∑
i=0

m∑
j=0

∫
dx T μν

(i−1, j)(x)hμν(x)

+ 1

2m

n∑
i=0

m∑
j=0

∫
dx T μν

5(i, j−1)(x)kμν(x)

)
(241)

where cn,m = 1 for either n = 0 or m = 0, cn,m = 1
2

otherwise. For instance

S1,0 = 1

2

∫
dx T μν

(0,0)(x) hμν(x) =
∫

dx
δS

δhμν(x)

∣∣∣∣
h,k=0

hμν(x) ,

(242)

S0,1 = 1

2

∫
dy T μν

5(0,0)(y) kμν(y) =
∫

dy
δS

δkμν(y)

∣∣∣∣
h,k=0

kμν(y) ,

(243)

S2,0 = 1

8

∫
dx T μν

(1,0)(x) hμν(x), (244)

S0,2 = 1

8

∫
dy T μν

5(0,1)(y) kμν(y), (245)

S1,1 = 1

4

∫
dx T μν

(0,1)(x)hμν(x) + 1

4

∫
dy T μν

5(1,0)(y) kμν(y), (246)

and

T μν

(0,0)(x) = 2
δS

δhμν(x)

∣∣∣∣
h,k−=0

, (247)

T μν

(1,0)(x) = 2
∫

dx1
δ2S

δhμν(x)δhμ1ν1(x1)

∣∣∣∣
h,k=0

×hμ1ν1(x1), (248)

T μν

(0,1)(x) = 2
∫

dy
δ2S

δhμν(x)δkλρ(y)

∣∣∣∣
h,k=0

×kλρ(y), (249)

T μν

(2,0)(x) =
∫

dx1dx2
δ3S

δhμν(x)δhμ1ν1(x1)δhμ2ν2(x2)

∣∣∣∣
h,k=0

×hμ1ν1(x1)hμ2ν2(x2), (250)

T μν

(0,2)(x) =
∫

dy1dy2
δ3S

δhμν(x)δkλ1ρ1(1)δkλ2ρ2(y2)

∣∣∣∣
h,k=0

×kλ1ρ1(1)kλ2ρ2(y2), (251)

T μν

(1,1)(x) = 2
∫

dx1dy
δ3S

δhμν(x)δhμ1ν1(x1)δkλρ(y)

∣∣∣∣
h,k=0

×kμ1ν1(x1)kλρ(y). (252)

Similarly

T μν

5(0,0)(x) = 2
δS

δkμν(x)

∣∣∣∣
h,k−=0

, (253)

T μν

5(1,0)(x) = 2
∫

dx1
δ2S

δkμν(x)δhμ1ν1(x1)

∣∣∣∣
h,k=0

hμ1ν1(x1),

(254)

T μν

5(0,1)(x) = 2
∫

dy
δ2S

δkμν(x)δkλρ(y)

∣∣∣∣
h,k=0

kλρ(y), (255)

T μν

5(2,0)(x) =
∫

dx1dx2
δ3S

δkμν(x)δhμ1ν1(x1)δhμ2ν2(x2)

∣∣∣∣
h,k=0

×hμ1ν1(x1)hμ2ν2(x2), (256)

T μν

5(0,2)(x) =
∫

dy1dy2
δ3S

δkμν(x)δkλ1ρ1(1)δkλ2ρ2(y2)

∣∣∣∣
h,k=0

×kλ1ρ1(1)kλ2ρ2(y2), (257)

T μν

5(1,1)(x) = 2
∫

dx1dy
δ3S

δkμν(x)δhμ1ν1(x1)δkλρ(y)

∣∣∣∣
h,k=0

×hμ1ν1(x1)kλρ(y). (258)

The explicit expression of T μν

(0,0)(x) and T μν

5(0,0)(x) are given
in Eqs. (148) and (149).
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B.4 The one-loop one-point functions

The one-loop one-point functions of T μν and T μν
5 are defined

in path integral terms as follows:

〈〈Tμν(x)〉〉 =
∫

DφTμν(x) ei S[φ,h]

=
∫

Dφ
[(

Tμν

(0,0)(x) + Tμν

(1,0)(x)

+Tμν

(0,1)(x) + · · ·
)

ei(S10+S01+··· )] ei S0 (259)

where T can be either T or T5. Expanding the exponential:

〈〈Tμν(x)〉〉 =
∫

Dφ Tμν

(0,0)(x) ei S0

+
∫

Dφ
(

i S10 Tμν

(0,0)(x) + Tμν

(1,0)(x)
)

ei S0

+
∫

Dφ
(

i S01 Tμν

(0,0)(x) + Tμν

(0,1)(x)
)

ei S0

+
∫

Dφ

(
(i S20 − 1

2
S2

10) Tμν

(0,0)(x)

+i S10 Tμν

(1,0)(x) + Tμν

(2,0)(x)
)

ei S0

+
∫

Dφ

(
(i S02 − 1

2
S2

01) Tμν

(0,0)(x)

+i S01 Tμν

(0,1)(x) + Tμν

(0,2)(x)
)

ei S0

+
∫

Dφ
(
(i S11 − S01S01) Tμν

(0,0)(x)

+i S01 Tμν

(1,0)(x)

+i S10 Tμν

(0,1)(x) + Tμν

(1,1)(x)
)

ei S0

+ · · · . (260)

Next we introduce auxiliary external currents J and J̄ and
couple them to the free field �̄,� in S0.

〈〈T μν(x)〉〉[J, J̄ ] =
∫

D�̄D�
(

· · · · · · · · ·
)

× exp[i S0 + i
∫

( J̄� + � J )]

and set at the end J = J̄ = 0. At this point in
(

· · · · · · · · ·
)

one can replace � by δ

δ J̄
and � by − δ

δ J , so that the only

remaining dependence on � and � is in the factor exp[i S0 +∫
( J̄� + � J )]. Formally integrating over � and � leads to

an irrelevant infinite constant times

exp

[
−i
∫

J̄ P J

]
(261)

where P is the inverse of the kinetic differential opera-
tor in S0, i.e. the propagator in configuration space. The
final expression is the same as (260) with ei S0 replaced
by exp[−i

∫
j̄ P j], from which the Feynman rules can be

extracted. This is interpreted as

〈〈Tμν(x)〉〉 = 〈0|Tμν

(0,0)(x)|0〉 (262)

+〈0|T
(

i S10 Tμν

(0,0)(x) + Tμν

(1,0)(x)
)

|0〉
+〈0|T

(
i S01 Tμν

(0,0)(x) + Tμν

(0,1)(x)
)

|0〉

+〈0|T
(

(i S20 − 1

2
S2

10) Tμν

(0,0)(x)

+i S10 Tμν

(1,0)(x) + Tμν

(2,0)(x)
)

|0〉

+〈0|T
(

(i S02 − 1

2
S2

01) Tμν

(0,0)(x)

+i S01 Tμν

(0,1)(x) + Tμν

(0,2)(x)
)

|0〉
+〈0|T m

(
(i S11 − S01S01) Tμν

(0,0)(x) + i S01 Tμν

(1,0)(x)

+i S10 Tμν

(0,1)(x) + Tμν

(1,1)(x)
)

|0〉
+ · · ·
≡ 〈0|Tμν

(0,0)(x)|0〉 (263)

+
∞∑

n+m≥1

1

2n+mn!m!
∫ ∏

i, j,i+ j≥1

dxi dy j hμ1ν1(x1) · · ·

×hμi νi (xi )kλ1ρ1(1) . . . kλ j ρ j (y j )

×Tμνμ1ν1...μnνn ,λ1ρ1···λmρm (x, x1, . . . , xn,1 , . . . , ym).

The expansion coefficients Tμνμ1ν1···μnνn (x, x1, · · · , xn),
where T stands both for T and T5, are introduced for conve-
nience.

B.5 Trace Ward indentities

The quantum Ward identities for the Weyl and axial Weyl
symmetry are given by (150) and (151). We need to expand
them in series of h and k. With reference to (264) we get

T(0,0)(x) ≡ 〈0|T(0,0)
μ
μ(x)|0〉 = 0, (264)

T(1,0)(x, x1) ≡ T(1,0)
μμ1ν1
μ (x, x1)

+2δ(x − x1)〈0|T μ1ν1
(0,0) (x1)|0〉 = 0,

(265)

T(0,1)(x, y1) ≡ T(0,1)
μμ1ν1
μ (x, y1)

+2δ(x − y1)〈0|T μ1ν1
5(0,0)(y1)|0〉 = 0,

(266)

T(1,1)(x, x1, y1) ≡ T(1,1)
μμ1ν1λ1ρ1
μ (x, x1, y1)

+2δ(x − x1)T μ1ν1λ1ρ1
(0,1) (x1, y1)

+2δ(x − y1)T μ1ν1λ1ρ1
5(1,0) (x1, y1) = 0,

(267)

T(2,0)(x, x1, x2) ≡ T(2,0)
μμ1ν1μ2ν2
μ (x, x1, x2)

+2(δ(x − x1)
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+δ(x − x2))T μ1ν1μ2ν2
(1,0) (x1, x2) = 0,

(268)

T(0,2)(x, y1, y2) ≡ T(0,2)
μλ1ρ1λ2ρ2
μ (x, y1, y2)

+2(δ(x − y1)

+δ(x − y2))T λ1ρ1λ2ρ2
5(0,1) (y1, y2) = 0,

· · · (269)

and

T5(0,0)(x) ≡ 〈0|T5(0,0)
λ
λ(x)|0〉 = 0, (270)

T5(1,0)(x, x1) ≡ T5(1,0)
λμ1ν1
λ (x, x1) + 2δ(x − x1)

×〈0|T μ1ν1
5(0,0)(x1)|0〉 = 0, (271)

T5(0,1)(x, y1) ≡ T5(0,1)
λμ1ν1
λ (x, y1) + 2δ(x − y1)

×〈0|T λ1ρ1
(0,0) (y1)|0〉 = 0, (272)

T5(1,1)(x, x1, y1) ≡ T5(1,1)
λμ1ν1λ1ρ1
λ (x, x1, y1)

+2δ(x − x1)T μ1ν1λ1ρ1
5(1,0) (x1, y1)

+2δ(x − y1)T μ1ν1λ1ρ1
(0,1) (x1, y1) = 0,

(273)

T5(2,0)(x, x1, x2) ≡ T5(2,0)
λμ1ν1μ2ν2
λ (x, x1, x2)

+2(δ(x − x1) + δ(x − x2))

×T μ1ν1μ2ν2
(1,0) (x1, x2) = 0, (274)

T5(0,2)(x, y1, y2) ≡ T5(0,2)λ
λλ1ρ1λ2ρ2(x, y1, y2)

+2(δ(x − y1) + δ(x − y2))

×T λ1ρ1λ2ρ2
(0,1) (y1, y2) = 0,

· · · (275)

where

T μνμ1ν1
(1,0) (x, x1) = i〈0|T T μν

(0,0)(x)T μ1ν1
(0,0) (x1)|0〉

+4〈0| δ2S

δhμν(x)δhμ1ν1(x1)
|0〉, (276)

T μνλ1ρ1
(0,1) (x, y1) = i〈0|T T μν

5(0,0)(x)T λ1ρ1
(0,0) (y1)|0〉

+4〈0| δ2S

δhμν(x)δkλ1ρ1(y1)
|0〉 (277)

and

T μνμ1ν1μ2ν2
(2,0) (x, x1, x2) = −〈0|T T μν

(0,0)(x)

×T μ1ν1
(0,0) (x1)T

μ2ν2
(0,0) (x2)|0〉

+4i〈0|T T μ1ν1
(0,0) (x1)

δ2S

δhμν(x)δhμ2ν2(x2)
|0〉

+4i〈0|T T μ2ν2
(0,0) (x2)

δ2S

δhμ1ν1(x1)δhμν(x)
|0〉

+4i〈0|T T μν

(0,0)(x)
δ2S

δhμ1ν1(x1)δhμ2ν2(x2)
|0〉

+8〈0| δ3S

δhμν(x)δhμ1ν1(x1)hμ2ν2(x2)
|0〉, (278)

T μνλ1ρ1λ2ρ2
(0,2) (x, y1, y2) = −〈0|T T μν

(0,0)(x)

×T λ1ρ1
5(0,0)(1)T

λ2ρ2
5(0,0)(y2)|0〉

+4i〈0|T T λ1ρ1
5(0,0)(y1)

δ2S

δhμν(x)δkλ2ρ2(y2)
|0〉

+4i〈0|T T λ2ρ2
5(0,0)(y2)

δ2S

δkλ1ρ1(y1)δhμν(x)
|0〉

+4i〈0|T T μν

(0,0)(x)
δ2S

δkλ1ρ1(y1)δkλ2ρ2(y2)
|0〉

+8〈0| δ3S

δhμν(x)δkλ1ρ1(y1)hλ2ρ2(y2)
|0〉 (279)

and

T μνμ1ν1λ1ρ1
(1,1) (x, x1, y1) = −〈0|T T μν

(0,0)(x)

×T μ1ν1
(0,0) (x1)T

λ1ρ1
5(0,0)(y1)|0〉

+4i〈0|T T λρ1
5(0,0)(y1)

δ2S

δhμν(x)δhμ1ν1(x1)
|0〉

+4i〈0|T T μ1ν1
(0,0) (x1)

δ2S

δkλ1ρ1(y1)δhμν(x)
|0〉

+4i〈0|T T μν

(0,0)(x)
δ2S

δkλ1ρ1(y1)δhμ1ν1(x1)
|0〉

+8〈0| δ3S

δhμν(x)δhμ1ν1(x1)kλ1ρ1(y1)
|0〉 (280)

and for the axial tensors

T λρμ1ν1
5(1,0) (x, x1) = i〈0|T T λρ

5(0,0)(x)T μ1ν1
(0,0) (x1)|0〉

+4〈0| δ2S

δkλρ(x)δhμ1ν1(x1)
|0〉, (281)

T λρλ1ρ1
5(0,1) (x, y1) = i〈0|T T λρ

5(0,0)(x)T λ1ρ1
(0,0) (y1)|0〉

+4〈0| δ2S

δkλρ(x)δkλ1ρ1(y1)
|0〉, (282)

T λρμ1ν1λ1ρ1
5(1,1) (x, x1, y1) = −〈0|T T λρ

5(0,0)(x)

×T μ1ν1
(0,0) (x1)T

λ1ρ1
5(0,0)(y1)|0〉

+4i〈0|T T λρ

5(0,0)(x)
δ2S

δhμ1ν1(x1)δkλ1ρ1(y1)
|0〉

+4i〈0|T T μ1ν1
(0,0) (x1)

δ2S

δkλ1ρ1(y1)δkλρ(x)
|0〉

+4i〈0|T T λρ

5(0,0)(x)
δ2S

δkλ1ρ1(y1)δhμ1ν1(x1)
|0〉

+8〈0| δ3S

δhλρ(x)δhμ1ν1(x1)hλ1ρ1(y1)
|0〉 (283)
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and

T λρμ1ν1μ2ν2
5(2,0) (x, x1, x2) = −〈0|T T λρ

5(0,0)(x)

×T μ1ν1
(0,0) (x1)T

μ2ν2
(0,0) (x2)|0〉

+4i〈0|T T μ1ν1
(0,0) (x1)

δ2S

δkλρ(x)δhμ2ν2(x2)
|0〉

+4i〈0|T T μ2ν2
(0,0) (x2)

δ2S

δhμ1ν1(x1)δkλρ(x)
|0〉

+4i〈0|T T λρ

5(0,0)(x)
δ2S

δhμ1ν1(x1)δhμ2ν2(x2)
|0〉

+8〈0| δ3S

δkλρ(x)δhμ1ν1(x1)hμ2ν2(x2)
|0〉

and

T λρλ1ρ1λ2ρ2
5(0,2) (x, y1, y2) = −〈0|T T λρ

5(0,0)(x)

×T λ1ρ1
5(0,0)(y1)T

λ2ρ2
5(0,0)(y2)|0〉

+4i〈0|T T λ1ρ1
5(0,0)(y1)

δ2S

δkλρ(x)δkλ2ρ2(y2)
|0〉

+4i〈0|T T λ2ρ2
5(0,0)(y2)

δ2S

δkλ1ρ1(y1)δkλρ(x)
|0〉

+4i〈0|T T λρ

5(0,0)(x)
δ2S

δkλ1ρ1(y1)δkλ2ρ2(y2)
|0〉

+4〈0| δ3S

δkλρ(x)δkλ1ρ1(y1)kλ2ρ2(y2)
|0〉. (284)

C Samples of Feynman diagram calculations

In this appendix we give more details on some of the Feynman
diagrams computed in Sect. 3.

C.1 T(0) two-point function

Let us start from a very simple one, the calculation of
〈0|T T μν

(0) (x)T λρ

(0) (y)|0〉. In momentum space this corresponds
to

− 1

64

∫
d4 p

(2π)4 tr

(
1

/p
(2p + k)μγ ν

1

/p + /k
(2p + k)λγ ρ 1 + γ5

2

(
μ ↔ ν

λ ↔ ρ

))
, (285)

whose odd parity part is

− i

36

∫
d4 p

(2π)4

(
εσντρ pσ kτ (2p + k)μ(2p + k)λ

p2(p + k)2

+
(

μ ↔ ν

λ ↔ ρ

))
. (286)

The corresponding regulated expression is

− i

36

∫
d4 p

(2π)4

∫
dδ�

(2π)δ

(
εσντρ pσ kτ (2p + k)μ(2p + k)λ

(p2 − �2)((p + k)2 − �2)

+
(

μ ↔ ν

λ ↔ ρ

))
. (287)

Only the terms quadratic in p in the numerator may survive
for symmetry reasons, but for the same reason they give rise
to δ

μ
σ and δλ

σ , which leads to the vanishing of (287). If we
contract (287) with ημν its vanishing is even more evident.

C.1.1 Terms P–V f f h–P–V ′
f f hh and similar

We wish to evaluate the terms contained in 〈0|T T μν

(0) (x)

δ2 S
δhμ1ν1 (x1)δhμ2ν2 (x2)

|0〉. They are diagram with an incoming

graviton line of momentum q and two outgoing ones of
momentum k1, k2. The first is the diagram P–V f f h–P–
V ′

f f hh , whose odd part is

3

512

∫
d4 p

(2π)4tr

⎡
⎣
⎛
⎝
⎛
⎝ 1

/p
(2p−q)μγ ν 1

/p−/q
(2p−q)μ1γ ν1ην1ν2

+
⎛
⎝ μ ↔ ν

μ1 ↔ ν1

μ2 ↔ ν2

⎞
⎠
⎞
⎠ (μ1, ν1) ↔ (μ2, ν2)

⎞
⎠ γ5

2

⎤
⎦ . (288)

Saturating it with ημν one gets

3

512

∫
d4 p

(2π)4tr

[((
1

/p
(2/p−/q)

1

/p−/q
(2p − q)μ1γ ν1ην1ν2

+
(

μ1 ↔ ν1

μ2 ↔ ν2

))

+ (μ1, ν1) ↔ (μ2, ν2)

⎞
⎠ γ5

2

⎤
⎦ , (289)

which clearly vanishes because of the γ trace. It follows that
also the odd part of the diagram P–V ′

f f h–P–V ′
f f hh vanishes.

The same conclusion holds if in these previous diagrams
we replace V ′

f f hh with V ′′
f f hh and V ′′′

f f hh .
Proceeding in the same way we can prove that also the

odd part of

ημν〈0|T T μ1ν1
(0) (x1)

δ2S

δhμν(x)δhμ2ν2(x2)
|0〉 (290)

vanishes. But there is a simpler way to get rid of the terms
containing one T(0) factor and one second derivative of S and
it is to prove that their odd parity part vanishes before taking
the trace.

Let us consider again (288), that is, the untraced P–
V f f h–P–V ′

f f hh . Introducing a dimensional regulator δ we
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can rewrite it as

3

1024

∫
d4 p

(2π)4

∫
dδ�

(2π)δ

×
[

tr

(
/p

p2 − �2 γν
/p − /q

(p − q)2 − �2 γμ2γ5

)

× (2p − q)μ(2p − q)μ1ην1ν2 + · · ·
]

(291)

where the dots denote the symmetrizations indicated in (288).
Let us take the γ trace:

3i

256

∫
d4 p

(2π)4

∫
dδ�

(2π)δ
εσντμ2 pσ qτ

(2p − q)μ(2p − q)μ1ην1ν2

(p2 − �2)((p − q)2 − �2)
+ · · · . (292)

The integrand has two p2 terms in the numerator. They
are proportional, respectively, to εμντμ2qτ qμ1ην1ν2 and
εμ1ντμ2qτ qμην1ν2 . The first vanishes under the μ ↔ ν sym-
metrization, the other under the symmetrization (μ1, ν1) ↔
(μ2, ν2).

Next we do the same for the untraced P–V f f h–P–V ′′′
f f hh .

The relevant integral is

1

128

∫
d4 p

(2π)4 tr

[
1

/p
(2p − q)μγ ν 1

/p − /q
(2/p − /q)

γ5

2

×(ημ1ν1ημ2ν2 − ημ1ν2ημ2ν1 − ημ1μ2ην1ν2)

]
(293)

symmetrized in μ ↔ ν. Writing 2/p − /q = /p + /p − /q and
simplifying with the denominators, we get two terms each
with a trace of two γ ’s with γ5, which vanishes.

C.1.2 The term P–V f f h–P–V ε
f f hh

This term requires a bit more elaboration. The starting point
is the integral

i

512

∫
d4 p

(2π)4 tr

[
1

/p
(2p − q)μγ ν 1

/p − /q
tμ1ν1μ2ν2κλ

× (k1 − k2)λγκ

1 + γ5

2

]
, (294)

which has to be symmetrized in μ ↔ ν. The odd part is

i

1024

∫
d4 p

(2π)4

[
tr

(
1

/p
γ ν 1

/p − /q
γκ

)
(2p − q)μtμ1ν1μ2ν2κλ

×(k1 − k2)λ + (μ → ν)

]
. (295)

Next we introduce the dimensional regulator and use Lorentz
covariance to obtain

i

256

∫
d4 p

(2π)4

∫
dδ�

(2π)δ

1

(p2 − �2)((p − q)2 − �2)
×

×
[(

pν(p − q)κ − (p ·(p − q) + �2)δν
κ + pκ(p − q)ν

)

× (2p − q)μtμ1ν1μ2ν2κλ(k1 − k2)λ + (μ → ν)
]
. (296)

Next we introduce a Feynman parameter x , 0 ≤ x ≤ 1 and
represent

1

(p2 − �2)((p − q)2 − �2)

=
∫ 1

0
dx

1

((p − xq)2 − �2 + x(1 − x)q2)2 ,

then we change variable p → p′ = p − xq. The result is

i

256

∫
d4 p

(2π)4

∫
dδ�

(2π)δ

∫ 1

0
dx

tμ1ν1μ2ν2κλ(k1 − k2)λ

(p2 − �2 + x(1 − x)q2)2

×
[

1

2

(
ημνqκ + δμ

κ qν + δν
κqμ

)
p2(2x − 1)

+(2qμqνqκ − qμq2δν
κ )x(1 − x)(1 − 2x)

−3

2
qμ p2δν

κ (2x − 1) − �2qμδν
κ (2x − 1)

]
, (297)

which must be symmetrized under μ ↔ ν. All the terms
vanish because of the x integration.
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