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1 Introduction

In the latest years, field theories, and especially conformal field theories, in 3d have be-
come a favorite ground of research. The motivations for this are related both to gravity
and to condensed matter, see for instance [1-3] and references therein, based on AdS/CFT
correspondence, where 3d can feature on both sides of duality. Also higher spin/CFT cor-
respondence has raised interest on weakly coupled CFT in 3d, [4-6]. In this context many
3d models, disregarded in the past, are being reconsidered [7, 8]. This paper is devoted to
the free massive fermion model in 3d coupled to various sources. Unlike the free massless
fermion, [9], this model has not been extensively studied, although examples of research
in this direction exist, see for instance [10-12] and also [4], and for the massless scalar
model [13]. Tts prominent property, as opposed to the massless one,! is that the fermion
mass parameter m breaks parity invariance, and this feature has nontrivial consequences
even when m — 0. In this paper we intend to analyze it more in depth. We will couple
it to various external sources, not only to a gauge field and a metric, but also to higher
tensor fields.

We are interested in the one-loop effective action, in particular in the local part of its
UV and IR limits. These contributions are originated by contact terms of the correlators
(for related aspects concerning contact terms, see [16-19]). To do so we evaluate the 2-point
correlators, and in some cases also the 3-point correlators, of various currents. Our method
of calculation is based on Feynman diagrams and dimensional regularization. Eventually
we take the limit of high and low energy compared to the mass m of the fermion. In this
way we recover some well-known results, [7, 11, 20], and others which are perhaps not
so well-known: in the even parity sector the correlators are those (conformal covariant)
expected for the a free massless theory; in the odd parity sector the IR limit of the effective
action coincides with the gauge and gravity Chern-Simons (CS) action, but also the UV
limit lends itself to a similar interpretation provided we use a suitable scaling limit. We
also couple the same theory to higher spin symmetric fields. The result we obtain in this
case for the spin 3 current in the UV limit is a generalized CS action. We recover in this
way theories proposed long ago from a completely different point of view, [21]. In the IR
limit we obtain a different higher spin action.

We remark that in general the IR and UV correlators in the even sector are non-local,
while the correlators in the odd-parity sector are local, i.e. made of contact terms (for
related aspects, see [7]).

!The free massless Majorana model is plagued by a sign ambiguity in the definition of the partition
function, [14, 15]. This should not be the case for the massive model. This problem is anyhow under
investigation.



Apart from the final results we find other interesting things in our analysis. For in-
stance the odd parity correlators we find as intermediate results are conformal invariant at
the fixed point. However, although we obtain them by taking limits of a free field theory,
these correlators cannot be obtained from any known free field theory (using the Wick the-
orem). Another interesting aspect is connected to the breaking of gauge or diffeomorphism
symmetry in the process of taking the IR and UV limits in three-point functions. Although
we use analytic regularization, when taking these limits we cannot prevent a breaking of
symmetry in the correlators. They have to be ‘repaired’ by adding suitable counterterms
to the effective action.

The paper is organized as follows. The next section is preparatory, we introduce the
notation, define the higher spin currents and the generating functions for n-point corre-
lators. Section 3 is devoted to two-point functions of gauge currents, of the e.m. tensor
and of the spin three currents. In particular the local odd-parity action extracted from
these correlators in the UV limit is identified with an action first introduced in ref. [21].
Section 4 is auxiliary: we discuss CS actions and their invariance analyzed with the tool
of perturbative cohomology. Section 5 is devoted to the three-point functions of currents,
and to the rather complicated issue of conservation. In section 6 we analyze three-point
functions of the e.m. tensor and their IR and UV limits. Finally section 7 contain our
conclusions. Several appendices are devoted to particular issues, to introduce auxiliary
material or to show explicit calculations.

2 The 3d massive fermion model coupled to external sources

2

The simplest model is that of a Dirac fermion® coupled to a gauge field. The action is

S[A] = / &z [ipy" Dy — mpp], Dy = 0, + Ay, (2.1)

where A, = A/‘j(x)T“ and T are the generators of a gauge algebra in a given representation
determined by ¢. We will use the antihermitean convention, so [T%, T%] = f®°T¢, and the
normalization tr(TT?) = §%°.

The current
Ji(x) = Py T (2.2)

is (classically) covariantly conserved on shell as a consequence of the gauge invariance
of (2.1)

(DJ)* = (9"6° + fo*eA).J = 0. (2.3)

The next example involves the coupling to gravity

. a A 1 C C 1 c
Slg] = /d3a:e [szfj’y Vo — mww] y Vu=0,+ §wub02b , b= 1 [’yb,’y } . (24)

2The minimal representation of the Lorentz group in 3d is a real Majorana fermion. A Dirac fermion is

a complex combination of two Majorana fermions. The action for a Majorana fermion is é of (2.1).



The corresponding energy momentum tensor
7 - < >
T,ul/ = Zw <'Y,u Ov +w au) (0 (25)

is covariantly conserved on shell as a consequence of the diffeomorphism invariance of
the action,

VAT, () = 0. (2.6)

However we can couple the fermions to more general fields. Consider the free action

S = / Pz [ipy"Oup — minp] (2.7)
and the spin three conserved current
1- 1 - 5 -
Juipops = iw’)’(mauzaug)l/’ + ia(mamw')’ua)w - ga(mw’)’maus)w
1 - m? —
+§77(M1H2a w7u3)aa¢ - ?n(ulmzﬁ%ﬂ)d)‘ (2.8)
Using the equation of motion one can prove that
0" Juwx = 0, (2.9)
4 P - -
Juta = —m (—iO\p + ihpOrY 4 29 a0)) . (2.10)

9

Therefore, the spin three current (2.8) is conserved on shell and its tracelessness is softly
broken by the mass term. Similarly to the gauge field and the metric, we can couple the
fermion 1 to a new external source b, by adding to (2.7) the term

/d%JWbW*. (2.11)

Notice that this requires b to have canonical dimension -1. Due to the (on shell) current
conservation this coupling is invariant under the (infinitesimal) gauge transformations

Sbun = O, (2.12)

where round brackets stand for symmetrization. In the limit m — 0 we have also invariance
under the local transformations

5b,u1/)\ = A(,unz/)\)a (213)

which are usually referred to as (generalized) Weyl transformations and which induce the
tracelessness of J,,,\ in any couple of indices.

The construction of conserved currents can be generalized as follows, see [8, 9]. There
is a generating function for J™. Introduce the following symbols

— <~
Uy =0, vy =0, (uv) = ut'vy, (uz) = u'z,, (vz2) = 24, etc,



where z* are external parameters. Now define

J(x;2) = Z J;(jl‘_)._unz“1 co2M = (y2) F(u, v, 2), (2.14)

n

where

sinh vV X

F(u,v,2) = 2702 f(x) f(X) = o

X = 2(uv){zz) — 4(uz)(vz).

(2.15)
Defining next the operator D = <(u+v)%>, it is easy to prove that, using the free equation
of motion,

DJ(z;2z) = 0. (2.16)

Therefore all the homogeneous terms in z in J(x; z) are conserved if m = 0. If m # 0 one
has to replace X with Y = X — 2m?(zz). Then we define

Tn(aiz) = 32T 2 = Glyz)el =0 f(y )y (2.17)

and one can prove that
Dm(x;2) =0, (2.18)
with m # 0. The case J®) in (2.17) coincides with the third order current introduced before.
For any conserved current Jﬁ(ﬁ)#n we can introduce an associated source field pH1--Hn
similar to the rank three one introduced above, with a transformation law that gener-
alizes (2.12). However, in this regard, a remark is in order. In fact, (2.12) has to be
understood as the transformation of the fluctuating field b,,, which is the lowest order
term in the expansion of a field B,,x = b, + ... whose background value is 0. by,
plays a role similar to Ay, in the expansion of the metric g, = 1, + hu + ... (see also
appendix B). In order to implement full invariance we should introduce in the free action
the analog of the spin connection for By, and a full covariant conservation law would
require introducing in (2.9) the analog of the Christoffel symbols.

2.1 Generating function for effective actions

The generating function of the effective action of (2.1) is

o0 'n+l n
WA =) Zn! / [ PwiA®# (@) . A% (2,) O[T Tot (1) - TS (2a)[0),  (2.19)
n=1 i=1

where the time ordered correlators are understood to be those obtained with the Feynman
rules. The full one-loop 1-pt correlator for Jj; is

SWA]

(Ju(@)) = A (z) (2.20)

= ZTL - a a a a a
-3 n!/Hd%iA W1 (zy) L A (1) (O] T T8 () I (1) . .. J9 (1)[0).
n=1 i=1



Later on we will need also the one-loop conservation

(DM Tu(2)))® = 0" (T3 (@) + FoAL (@) (T#(2)) = 0. (2.21)

We can easily generalize this to the case of higher tensor currents J®. The generating
function is

W(p) Z ' /1_[0[3$ AP () g (g
n!

n=1

< O TTE) (1) TP, (20)]0). (2.22)

In particular a,, = h;,, and Jﬁ) = Ty, and a, ) = byyn. The full one-loop 1-pt correlator

o .
for Ju is

SW
<<Jf£) (@) = W Z /Hd% QI () L g ()
<orr @ @)D (@) TP L (a)]0).(2.23)

The full one-loop conservation law for the energy-momentum tensor is
VE(T,(x)) = 0. (2.24)

A similar covariant conservation should be written also for the other currents, but in this
paper for p > 2 we will content ourselves with the lowest nontrivial order in which the
conservation law reduces to

IR @) = 0. (2.25)

Hi---Hp

Warning. One must be careful when applying the previous formulas for generating func-
tions. If the expression <O]7'J,(£)1._,mp (1) ... J,S{)ﬂ__“np (2,,)|0) in (2.22) is meant to denote
the n-th point-function calculated by using Feynman diagrams, a factor " is already in-
cluded in the diagram themselves and so it should be dropped in (2.22). When the current
is the energy- '

be replaced by 2+n' The factor Qin is motivated by the fact that when we expand the action

S[n+h) = S[n] + /ddx

Y 4
dgH” lg=n

the factor 555 = %TW. Another consequence of this fact will be that the presence
g=n

of vertices with one graviton in Feynman diagrams will correspond to insertions of the
operator %TW in correlation functions.

2.2 General structure of 2-point functions of currents

In order to compute the generating function (effective action) W we will proceed in the next
section to evaluate 2-point and 3-point correlators using the Feynman diagram approach.



It is however possible to derive their general structure on the basis of covariance. In this
subsection we will analyze the general form of 2-point correlators.

As long as 2-point correlators of currents are involved the conservation law is simply
represented by the vanishing of the correlator divergence:

" O|TJ®  (2)JP)  (y)|0) = 0. (2.26)

H1-.-Mp vi...Vp

Using Poincaré covariance and this equation we can obtain the general form of the cor-
relators in momentum space in terms of distinct tensorial structures and form factors.

Denoting by

Ty (k) = (TP (k)JP) |, (~k)) (2.27)

M1 fhp V1..Vp

the Fourier transform of the 2-point function, the conservation is simply represented by
the contraction of F),  with kH:

kuljul...up,lq.,.l/p(k) =0. (228)

The result is as follows. For 1-currents we have

T = Iy = o [r (1) ey (Y K] (3.9)

where |k| = Vk% and 7, k are model dependent form factors.
The most general 2-point function for the energy-momentum tensor has the form
. - 7, (K2 /m?
<T;w (k) Too (_k)> = g(‘k’) (k,uku - npqu) (kpka - UpokQ)
T (k?/m?)
14
kg (k? /m?)
1927

+ [(kukp — n#pkz) (kl,kg — nyng) + u & V] (2.30)

[(eup‘rkT (kuka - nuak2) +p & 0') + u I/] .

where Tg,Té and k4 are model-dependent form-factors. Vanishing of traces over (uv) or

(po) requires 74 + Té = 0. Both here and in the previous case, the notation, the signs and
the numerical factors are made to match our definition with the ones used in [7].3
As for the order 3 tensor currents the most general form of the 2-point function in

momentum representation is

~ ~ k2 k2
<JM1/¢2M3(1€)JV1V2V3(*]€)> =Ty <mg> |k|5wu1u277u31/1771/21/3 + Tl; <m2> |k3|57ru11/177/~t2u277u3u3

k? k2
4 o /
+k 6H1V10k |:Hb < 5 | TuapsTravs + Ky 5 | TpoveTpsvs | 5
m m
(2.31)
3Except that we work in spacetime with Lorentzian signature (+—--).



where complete symmetrisation of the indices (p1, 2, 13) and (1, v9,v3) is implicit? and

kuk,
Tuy = Nuv — 22 (232)

is the transverse projector. This expression is, by construction, conserved but not traceless.
Vanishing of traces requires

Amy + 371, =0, 4w+ kp=0. (2.33)

3 Two-point functions

In this section we compute the the 2-point function of spin 1, 2 and 3 currents using
Feynman diagrams with finite mass m. Then we take the limit m — 0 or m — oo with
respect to the total energy of the process, i.e. the UV and IR limit of the 2-point functions,
respectively. These are expected to correspond to 2-point functions of conformal field
theories at the relevant fixed points. We will be mostly interested in the odd parity part
of the correlators, because in the UV and IR limit they give rise to local effective actions,
but occasionally we will also consider the even parity part.

3.1 Two-point function of the current Jj(x)

This case has been treated in [16], therefore we will be brief. The only contribution comes
from the bubble diagram with external momentum k& and momentum p in the fermion loop.
In momentum representation we have

~ d3p 1 1
ab _ a b - _ ab
(k) = /(Qﬂ)gTr <’yMT Iji— m'ny ?7— i m) 20
y / &p pu(p—k)y—p-(p — k) + pu(p — K)oy + imeuok” + m2n,
(2m)3 (p? —m?)((p — k)* —m?)

(3.1)

For the even parity part we get

- 2i 4m? K| 2lm|] kuk, — k*n
Jab(even) k) = 760,1) 1 tanh _ phv uv 3.9
O R) = 2 R A Tyl A woE 0 32

while for the odd parity part we get

= 1 m k|
b(odd b o
sz(o )(k) = %5(1 Euygk marctanh <2|7’n|> (33)
where |k| = Vk2. The conservation law (2.28) is readily seen to be satisfied. In the
following we are going to consider the IR and UV limit of the expressions (3.2) and (3.3)
and it is important to remark that we have two possibilities here: we may consider a

4“When we say that the complete symmetrisation is implicit it means that one should understand, for
instance

Tpuy po Wpgn Twovg — o [Mp pio Mpgwr Twgvg + My pg Mppws Twgwg + - - -] -

9



timelike momentum (k% > 0) or a spacelike one (k* < 0). In the first case, we must

%) has branch-cuts on the real axis for % > 1 and

notice that the function arctanh (
it acquires an imafinary part. On the other hand, if we consider spacelike momenta, we

21':1") = ¢arctan (%) and arctan (%) is real on the real axis. The

region of spacelike momenta reproduces the Euclidean correlators. Throughout this paper

will have arctanh

we will always consider UV and IR limit as being respectively the limits of very large or
very small spacelike momentum with respect to the mass scale m. In these two limits

we get
2|k|
, ) MR
jﬁg(even)(k) _ Léﬁbm 3|m| , (3.4)
8 || ™ Uv
2
1
1 5% t
Tab(o a o m
Tae00) = ok 2 (35)
2 [k|

The UV limit is actually vanishing in the odd case (this is also the case for all the 2-point
functions we will meet in the following). However we can consider a model made of N
identical copies of free fermions coupled to the same gauge field. Then the result (3.5)
would be

N

jzg(odd) (k)) _ Zaabelﬂ’ff ko

m

I (3.6)

In this case we can consider the scaling limit |%| — 0 and N — oo in such a way that NV %
is fixed. Then the UV limit (3.6) becomes nonvanishing.

Fourier transforming (3.5) and inserting the result in the generating function (2.19)
we get the first (lowest order) term of the CS action

2
CS = :/deTr (A/\dA—i— 3A/\A/\A) (3.7)
/I
K 17 a a 1 aoc Aa C
= e (AMaVAA + 57 b AMAI;AA> .

In particular, from (3.5) we see that in the IR limit x = £5. The CS action (3.7) is
invariant not only under the infinitesimal gauge transformations

SA=d\+[A, N,  A=A\(x)T% (3.8)

but also under large gauge transformations when x € Z. From (3.5) follows that kyy = 0
and kg = +1/2, which suggests that the gauge symmetry is broken unless there is an even
number of fermions. A further discussion of this phenomenon can be found in [7].

3.2 Two-point function of the e.m. tensor

The lowest term of the effective action in an expansion in hj,, come from the two-point
function of the e.m. tensor. So we now set out to compute the latter. The correlators of



the e.m. tensor will be denoted with the letter T instead of J. The Feynman propagator
and vertices are given in appendix B. For simplicity from now on we assume m > 0.

The bubble diagram (one graviton entering and one graviton exiting with momentum
k, one fermionic loop) contribution to the e.m. two-point function is given in momentum
space by

1 [ d3 1
Tw,)\p(k) = —6—4 (27T)3Tr (p — m(2p — k:),ﬁ,,

p—}él—m@p - k:);(yp> , (3.9)

where symmetrization over (u,v) and (A, p) will be always implicit.

3.2.1 The odd parity part
The odd-parity part of (3.9) is

A (o _ / / d3p , (2p+ (22 — 1)k), (2p + (22 — 1)k)
;w/\p )3 €ovp b [p2 — m2 4 z(1 — z)k2]2

(3.10)

The evaluation of this integral is described in detail in appendix D. The result is
2 o 2
= (0dd) 3m dm k| 2|m| 1 €urak” (kvky — mupk?)
T ky=——|[1-——- tanh
o = i | (e () + % 1927
_sign(m)|m/|®
64

€urnak Mup- (3.11)

A surprising feature of (3.11) is that if we contract it with k* we do not get zero. Let us
look closer into this problem.

3.2.2 The divergence of the e.m. tensor: odd-parity part

To see whether the expression of the one-loop effective action is the legitimate one, one
must verify that the procedure to obtain it does not break diffeomorphism invariance. The
bubble diagram contribution to the divergence of the e.m. tensor is

kAT, (k)——l/d% (L (2 )k B —
2N = 64 (27_‘_)3 p — P — /Yup — k —m p AYp
1 1
Tr|{ —2p—k)b——F—2p—k A . 12
-Ff<pmﬁp ok )|+ e 12
Repeating the same calculation as above one finally finds

_sign(m)|m/

KT (1) = o
™

UVAp €ovp k7ky + ()\ <~ p) . (313)

This is a local expression. It corresponds to the anomaly

: 2
Ac = _S’lgng;’;‘m’ / N LN (3.14)
The counterterm to cancel it is
: 2
= Slgn%?;'”“' / €ouph5 07 h. (3.15)



Once this is done the final result is

R ) ey
(Tyw (k) Trp(—k))oaa = ZT%WJ’“ (kukx — k1) + Ao p (3.16)
with ) | il
3m 4m 2lm
rg(k?/m?) = === Kl - > arctanh () + } . (3.17)
J || k2 2|m| k|

Now (3.16) is conserved and traceless. To obtain (3.17) we have to recall that

Tourg (k) = § (T () Tog (1), (318)

which was explained in the warning of section 2.1. To complete the discussion we should also
take into account a tadpole graph which might contribute to the two-point function. With
the vertex Vi, s it is in fact possible to construct such a graph. It yields the contribution

3 .
%&gn(mﬂmptumpo k. (3.19)

This term violates conservation, just as the previous (3.13), but it has a different coefficient.
So it must be subtracted in the same way.

3.2.3 The UV and IR limit

Let us set hm\ﬂho kg = kyuv, and lim|£|H0 kg = KIR. We get
k m
m 3 m m
- m 2y o(‘f‘) 3.20
KIR ) KUV 27T‘k| + 2 (3.20)

As before for the gauge case, in the UV limit we can get a finite result by considering a
system of N identical fermions. Then the above 2-point function gets multiplied by N. In

the UV limit, !%’ — 0, we can consider the scaling limit N — oo, %‘ — 0 such that

m
A=N— (3.21)
k|
is fixed and finite. In this limit
3™ m
lim Ngy(k) = ——\. 3.22
N~>OO,|%|—)O g( ) 2 |m’ ( )

For a unified treatment let us call both UV and IR limits of x4 simply . In such limits
contribution to the parity odd part of the effective action can be easily reconstructed by

S0 = 1 [ oy 1 07 (D05 — ma D) . (3.23)

This exactly corresponds to a gravitational CS term in 3d, for which at the quadratic order
in h,, we have

2
CS = _96% Bz e <3uwﬁwaba + 3wuabwubcw)\ca> (3.24)
B 19; / A egup 7 <80‘9A‘9bhby N amhi) e

~10 -



Once again we note that the topological arguments combined with path integral quantiza-
tion force k to be an integer (x € Z). From kir = 1 we see that the quantum contribution
to the parity-odd part of the effective action in the IR is given by the local gravitational
CS term, with the minimal (positive or negative unit) coupling constant. The constant
37”)\ in the UV has of course to be integer in order for the action to be well defined also for
large gauge transformations. Finally we recall that the CS Lagrangian is diffeomorphism
and Weyl invariant up to a total derivative. However, note that for the Majorana fermion
one would obtain half of the result as for the Dirac fermion, i.e. kg = +1/2.

3.2.4 Two-point function: even parity part

Although in this paper we are mostly interested in the odd-parity amplitudes, for com-
pleteness in the following we calculate also the even parity part of the e.m. tensor 2-point
correlator.

The even parity part of the two-point function comes from the bubble diagram alone,
eq. (3.9). Proceeding in the same way as above one gets

(even 1 k‘2 1
700 = 173 (g ) g (s = mk?) (i, = maok?)

3 <k2> o (ks = mua?) (k= k) 4 050] (325)

i ]
im3
48 (nuAnup + NpeNur + 277uu77)\p)
where
% i (k? — 4m?)” k|
) = ———— ||m|k* + 4m[* - *————"arctanh | - 3.26
s () = sam ['m‘ ! = g e ()| @20

2 i (k* —16m*) ||
N A 4lml3 — 2, 7 h|{ — . 2
T <m2> ETE [ |m|® — |m|k* + o] arctan il (3.27)

Saturating (3.25) with k* we find

m3
48 (k)\nup + kpnu)\ + 2ky77)\p) (328)

The same result can be obtained directly from the even part of (3.12). The term (3.28) is

(even) o
k”TW/\p (k)=

local and corresponds to an anomaly proportional to

A¢ = / ¢ (oxhd +0uh) (3.29)

This can be eliminated by subtracting the counterterm
1

C=—3 /(hA”hA,, + h?). (3.30)

After this we can write
K2\ 1
(Tyw (k) Ty (—k))even = 74 ( > ]k‘| ( nﬂl’k2) (k/\kp - nAPkQ)
2N\ 1 (3.31)
+ 7, () T [(kukx — nuak?) (kuky — mupk?) + p <> v]
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The UV limit gives

. _ . ;1
a0 T 256 52
so that in this limit
_gpuvo_ b1 _ 2 _ 2
<T/w (k) TAp( E))oven = 256 || ( (k,uku 77;wk ) (kpkA 77p>\k )

- [(kukp - Wupkz) (/fuk,\ - 771/)\k2) + @+ 1/] ) (3.33)

This represents the two-point function of a CFT in 3d, which is a free theory, the massless
limit of the massive fermion theory we are studying.
The IR limit of the form factors (3.26) and (3.27) is

m k
T, = 247T‘ ( (H) : (3.34)
m k
(= ‘ ‘ (‘mD ' (3:35)
In this limit we have
ilm
(L T () = G0 |5 (i 3 ) 1.0 9) = s+ )
k2 9
- ? (n,u)\nup + nupnuk) +k n,uz/'r/)\p:| . (3'36)

IR
The expression (3.36) is transverse but not traceless because 7, + 7, # 0. To have a well-
behaved IR limit we may add local counterterms to cancel the whole IR expression. That
may be accomplished by simply performing the shifts
m 1 |m
— | = 3.37
‘ ’ T_>T+487r‘k (3:37)

Ty — T,
g 9 24r

These shifts correspond to the addition of a set of local counterterms in the expression (3.31)
and they do not change the UV behavior since they go to zero in that limit.

3.3 Two-point function of the spin 3 current

Let us recall that we have postulated for the spin 3 current an action term of the form
Sing ~ / Bz T, (3.38)
where b is a completely symmetric 3rd order tensor (in this subsection we assume h,, =0

for simplicity). This interaction term gives rise to the following b-field-fermion-fermion
vertex Vp ff

—_

5 1 ,
3 (Vi @202 9205) + D1 (i Dipz V) — 39100 V2 92p8) + 5712 Vo) (q1-q2 +m*), (3.39)
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where ¢; and ¢o are the incoming momenta of the two fermions. For a spin n current, the
analogous vertex can be obtained from the formula

Vorr : (72) ella—a2)z) (—2(q1q2) (z2) + 4{q12) (g22) — 2m2<zz>) (3.40)

by differentiating with respect to z the right number of times (and setting z = 0).
As usual the contribution from the 2-point function comes from the bubble diagram
with incoming and outgoing momentum k,. Using the Vj;s vertex the bubble diagram

gives

- d3p 1 1
Ju1u2u3l/1l/21/3 (k) = / ( 3 Tr < [2 (7(1/1 (p - k)VQ (p - k)u;) + p(ulpv271/3))

2m) p—m
5 1 1
+§p(u1%2 (P —k)yy) — gn(u1l/27u3) (p'(p —k) — WQ)} m
1
: [2 (7(u1 (P = Kz (P = F) s ""p(ulpuﬂus))
5 1 9
+§p(u1'>’u2 (p - k),ug) - gn(u1u27u3) (p'(p - k) -m ) . (3'41)
The parity-even part of the final result is given by
7(even) K’ 5 / k? 5
Jylugygljll/gllg(k) =T W |k’ Ty o Tpavs Twovg + T W ’k| Tpiv1 Tpove Mgy
(3.42)
+ AEZ‘;?;)LSWWVW
where
_ i 4 2.2 4
T = 5ge 10 {6\k|]m\ (k* + 8k*m?* — 32m*)
k
- (3 (k2—4m2)3+8m2 (k*—6m?) (k2+4m2)> arctanh <2”Tr‘”>] , (3.43)
/ i 4 8.9 o 4
= —— |—6lk k*— -k 1
T = 51616 [ 6|k||m| < gk m + 16m >
k
+3 (k% — 4m?)? (K? 4 4m?) arctanh @,'M (3.44)
m

and A corresponds to a set of contact terms that are not transverse but may be

subtracted by local counterterms. It is given by

SO}
0 m® |3 7
Al(fl\;‘;!)iBVlVQVB = o |:4k#1 K Mo pis v + 3 (s Kpuo Mo vo Mg + Ko Ko M o Mg )
32 4 52 4 3.9
+T5m "7/111117]/121/277#31/3 + T5m 771111117’#2#3771/21/3 - Zk 77#111177#2#3771121/3 .
(3.45)
The parity-odd part is given by
~ k2 k2
dd 4
J/(g/tzltwwzug (k) =k euwwkg [’ib <m2> Tpops Tvovs T "ig (7712) 77#21/277#31/3] (3.46)
3.46
dd
+ "4;(101;12)#31/1 vav3?
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where

m k|
= —— | 20|k 16|k||m|> + (k* — 32m? tanh | —— 3.47
- WW,[ %]+ 16kl + (K* — 32m") svctanh (57 | (3.47)
2 k|
Kp = W {2\k| |m| + 8|k||m|* — (k* — 4m?)” arctanh <2[m|>] , (3.48)

and, as before, A1) corresponds to a set of contact terms that are not transverse but
may be subtracted by local counterterms. It is given by

dd sign(m)|m|* 128
Al(loluz)lldmuzus = _Teuwwkg (ku2 Ky Nvgvs + Koy kl/snmus) + 2—7m Nuove Muzvs

32
+?7m2nﬂzusnu2u3*k277MM377y2y3 . (3.49)

3.3.1 Even parity UV and IR limits
In the UV limit, i.e. |2¢| — 0, we find

, 1
m 7, =—- =

li li = —. 3.50
o AT 192 .

In the IR limit, i.e. }%] — 0, we find

co(lal) B mlzlo(a) e

As in the case of the IR limit of the 2-point function of the stress-energy tensor, these

m
To =

1357r
leading divergent contributions of the form factors give rise to a set of contact terms in the

IR that are all proportional to |m|. To add counter terms to make the IR well-behaved is
equivalent to perform the following shift in the form factors 7, and 7;:

/ / m
.52
1357r T I35y ‘ ! (3:52)
3.3.2 0Odd parity UV
In the UV limit we find
1 m m |2 1 m m|2
:77@’7’, /szo)j. 3.53
o= Tag T <k: > =357k T Uk (3:53)
As in the previous cases the UV is specified by the leading term in % We get (after Wick
rotation)
~ 1m 1 2
J;(L?ig;}i\ull)ng (k) = im 6#1V10k0 |:ku2k#3kl/2k1/3 - 7]{2]{#3]{11377#2112
k2
36 (Ku, KusMuops + Ko ku377V2V3) + k Nuava Musvs
1
_%k477u2;t377112113] . (3.54)
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From now on in this section we understand symmetrization among 1, p2, 3 and among
v1,v2,v3. The anti-Wick rotation does not yield any change. We can contract (3.54) with
any k** and any two indexes y; and find zero. Therefore (3.54) is conserved and traceless
(it satisfies eq. (2.33)).

We have obtained the same result (3.54) with the method illustrated in appendix E.

3.3.3 0dd parity IR
In the IR limit we find

8 m? 1 k
K m ++0<’

2 / 8m2 2 m |2
s a0\l | = o ([F]) @)

Once again the IR limit contain divergent contributions that can be treated by adding local
counter terms, which is equivalent to perform the following shifts on the form factors:

m2 2
- ——,
KA ATy

8 m

/ /
o TR T o R

(3.56)

The final result in Lorentzian metric (obtained with the two different methods above) is

~ 1 1
dd,IR 4 4
J;(fl)ughgu)lmug(k) = Efulmoko @k NuapsMvavs — ﬁk’ Nuova Musvs

1 16
_@kz (klnkl/snm#s + k#zkusnvzw) + ﬁk‘QkﬁQ ]4:,/277#3,/3

2
B,

_540 uzku;gkljzkl/g . (357)

The trace of (3.57) does not vanish. However at this point we must avoid a semantic
trap. A nonvanishing trace of this kind does not contradict the fact that it represents a fixed
point of the renormalization group. An RG fixed point is expected to be conformal, but
this means vanishing of the e.m. trace, not necessarily of the trace of the spin three current.

3.3.4 The lowest order effective action for the field B

The odd 2-point correlator in a scaling UV limit similar to (3.22), Fourier anti-transformed
and inserted in (2.22), gives rise to the action term

SOV) / 0 €y 307 BI220,,0,1, 0,0 B2 — 807 BIHRI0I0,,0, B,

+207 B \00,,0,, B""*" + 40° BMH2SP B,
_ 9o pra* ADQB””’p} : (3.58)

where B, = by,n + ... This is the lowest order term of the analog of the CS action for
the field B. This theory is extremely constrained. The field B has 10 independent compo-
nents. The gauge freedom counts 6 independent functions, the conservation equations are
3. The generalized Weyl (g-Weyl) invariance implies two additional degrees of freedom. So
altogether the constraints are more than the degrees of freedom. The question is whether
such CS actions contain nontrivial (i.e. non pure gauge) solutions.
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In a similar way (3.57) gives rise to the action

1 1
SUR = ——— | % o [ — 2307 BMIRE3Y),, 0, By, D,y BV

+640° BH1H23 010, 0,5 BV 1, — 1807 B¥12\00),,0,, B/
—320° Brks2pYt 4997 BMA 2B |, (3.59)

This action is invariant under (2.12), but not under (2.13).

Remark. The action (3.58) is similar to eq. (30) of [21]. The latter is written in terms
of spinor labels, therefore the relation is not immediately evident. After turning to the
ordinary notation, eq. (30) of [21] becomes

3
~ / B €pyno [280h“1“2“38u28M38V28V3 hYIVaVs 490 peis g, 9, hYYS )

14287 hHiH2H3 D2hulu2u3] (3.60)

and one can see that they are equal if we set B**\ = 0 in (3.58). The reason of the
difference is that in [21] the field h*? is traceless, while in (3.58) the field B,y is not. The
presence of the trace part modifies the conservation law and thus the action.

4 Chern-Simons effective actions

In the previous section we have seen that the odd parity 2-point correlators of the massive
fermion model, either in the IR or UV limit, are local and give rise to action terms which
coincide with the lowest (second) order of the gauge CS action and gravity CS action for
the 2-point function of the gauge current and the e.m. tensor, respectively; and to the
lowest order of a CS-like action for the rank 3 tensor field B. It is natural to expect that
the n-th order terms of such CS actions will originate in a similar way from the n-point
functions of the relevant currents. In particular the next to leading (third order) term
in the CS actions is expected to be determined by the 3-point functions of the relevant
currents. This is indeed so, but in a quite nontrivial way, with complications due both to
the regularization and to the way we take the IR and UV limit.

The purpose of this section is to elaborate on the properties of the gauge and gravity
CS actions, (3.7) and (3.24), respectively, in order to prepare the ground for the following
discussion. The point we want to stress here is that in order to harmonize the formalism
with the perturbative expansion in quantum field theory we need perturbative cohomology.
The latter is explained in detail in appendix C. It consists of a sequence of coboundary
operators which approximate the full cohomology: in the case of a gauge theory the se-
quence reduces to two elements, in the case of gravity or higher tensor theories the sequence
is infinite.
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4.1 CS term for the gauge field

Let us start with the gauge case. The action (3.7) splits into two parts, C'S = CS@ s,
of order two and three, respectively, in the gauge field A. The second term is expected to
come from the 3-point function of the gauge current. Gauge invariance splits as follows

s0cs® =9,  sWos® 4 50056) =0, (4.1)

These equations reflect themselves in the conservation laws, which also split into two equa-
tions. The conservation law for the 2-point function is simply the vanishing of the diver-
gence (on any index) of the latter, while for the 3-point function it does not consist in
the vanishing of the divergence of the latter, but involves also contributions from 2-point
functions. More precisely

OL(OIT ;i) T5 (y) J5(2)]0)
= 1™ 5(z — y)(O|T T (2)J5(2)|0) + [ 6(x — 2)(OIT IS (@) (y)[0),  (4.2)

which in momentum space becomes

—ig"JS (v, ko) + f22 JEC (ka) + F2 TS (k1) = 0, (4.3)

where ¢ = k1 + ko and jﬁfﬁ(k) and jﬁff\(k)l, k2) are Fourier transform of the 2- and 3-point
functions, respectively.
4.2 Gravitational CS term

Let us consider next the gravitational CS case. Much as in the previous case we split
the action (3.24) in pieces according to the number of h,, contained in them. This time
however the number of pieces is infinite:

2
Sy = R/d3$ A <8“wﬁbw>\ba + 3w#abwybcwxc“> = C’Sé(f) + C’Sf’) + ..., (4.4)
where
CSP) = g / B gy B (8"8A6bhb” - aomhg) (4.5)
and

R 14 oa C a 2 C a
s = 1 / &’z e A(zaahybawgauh — 20,100 Py, 0" hey — gaahgabhyachA
—20,0°h% (R Dehpy — h§Dchar) + 00 e (hSOalibe — Oah§ )
+0,0°hE (ph hae — DS.0phac) — BERCD, (th _ aaabh’;) ) (4.6)

Invariance of C'Sy under diffeomorphisms also splits into infinite many relations. The first
two, which are relevant to us here, are

046 csih = o, (4.7)
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where £ is the parameter of diffeomorphisms. Similar relations hold also for Weyl
transformations.

Such splittings correspond to the splittings of the Ward identities for diffeomorphisms
and Weyl transformations derived from the generating function (2.22). The lowest order
WTI is just the vanishing of the divergence of the 2-point e.m. tensor correlators. The next
to lowest order involves 2-point as well as 3-point functions of the e.m. tensor:

(OITH{O" Ty (2) T (y) T3 (2) }10)

= {250 (5o O (T (T 10N + 2575 (80 = DO T, ) o))

o3 = o 01T (T (@) Ty () HO) — 5000 = g O1T (T3 () Ta ()10
+ bl = OIS () Ta(VHO) + 5500 = DO (T3 ) Tas (1) |

(4.8)

In momentum space, denoting by Tuy,\p(k) and by Tw,,\pag(kl, k2) the 2-point and 3-point
function, respectively, this formula becomes

iquTuVApaﬁ(kh k2) = 2Q(CMTB)V:\p(k1) + 2Q()\Tp)~uaﬁ(k52) - naﬂk%TTl/)\p(kl)
_nAkaTﬂ/aﬁ<k2) + k2l/Ta6/\p(kl) + kluT)\paB(k2)7 (49)

where round brackets denote symmetrization normalized to 1.

From the action term (4.6), by differentiating three times with respect to hu,(x),ha,(y)
and hqp(z) and Fourier-transforming the result one gets a sum of local terms in momentum
space (see appendix F), to be compared with the IR and UV limit of the 3-point e.m.
tensor correlator.

4.3 CS term for the B field

Here we would like to understand the nature of the “CS-like” terms obtained in the IR
and UV limits, and especially to understand how it is possible that they are different in
the spin-3 case, unlike what we saw in spin-1 and spin-2.° For this purpose, we use a
higher-spin “geometric” construction originally developed in [36]. In the spin-3 case the
linearised “Christoffel connection” is given by the so-called second affinity defined by

1 1
Fa1az;ﬂ15253 = g {804180423515253 - 5 (80418513042,32,33 + aalaﬂzBa2ﬂ1ﬂ3
+80¢1653B025152 + 8062851 Ba15253 + at3<2852 Ba15153 + aoézaﬁsBalﬁlﬁb)

+851 aﬁzBmazﬁs + aﬂlaﬁsBOﬂazﬁz + 8/328533041042/51 } (4'10)

®In the literature one can find two kinds of generalizations of the CS action in 3d to higher spins (for a
general review on higher spin theories, see [25-32]). One leads to quadratic equations of motion, the other
to higher derivative equations of motion. The first kind of theories are nicely summarized in [33]. The
second kind of theories, to our best knowledge, was introduced in [21] (following [34]). This splitting was
already shadowed in [35].
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Under the gauge transformation (2.12) this “connection” transforms as
6Ara,3;w/p = 8;Lal/apAaﬁ' (411)

The natural generalisation of (the quadratic part of) the spin-1 and the spin-2 CS
action term to the spin-3 case is given by

Ics[B]

/dgl' EMJV Faﬁ;up)\ &,Fm;mﬁ

1
=3 / & €151, (0203 B 0°0,0\B""* + 20,0B"*F 0°9,B"

+ O BHaB 8UDB"Q5) + (boundary terms).  (4.12)

From (4.11) directly follows that this CS term is gauge invariant (up to boundary terms).
In the spin-3 case one can construct another 5-derivative CS term by using Fronsdal tensor
(or spin-3 “Ricci tensor”) defined by

(6%
Ryvp = T%aspwp
1

- §{DBWP — 0%(0pBawp + Oy Bapy + 9pBayw)
+ 010" By + 0°0" B, + 8”6”Bma}. (4.13)

Using this tensor one can defined another CS action term

Ios[B]

/ &’z 7 Ryupx 05 Ry

1 3 paf qo vpA paf qo vp

=5/ dx €uov (20,03 B"*F 8°0,0,B"** + 29,0B**° 970,B"P
—20,05B"P 9°0B" ) + OB 9°0BY 45
+ 0B, 8°0B",) + (boundary terms). (4.14)

The presence of two CS terms in the spin-3 case explains why there is a priori no reason
to expect from UV and IR limits to lead to the same CS-like term.
Now it is easy to see that the following combination

5 Ics[B] — 3 I [B] (4.15)

exactly gives the effective action term (3.58) which we obtained from the one-loop
calculation.

To understand why the combination (4.15) represents a generalization of the spin-2 CS
term (gravitational CS term), one has to take into account the symmetry under generalized
Weyl (g-Weyl) transformations, which for spin-3 is given by (2.13). It can be shown that
the CS terms (4.12) and (4.14) are not g-Weyl-invariant, but that (4.15) is the unique
g- Weyl-invariant linear combination thereof.

It is then not surprising that the effective current J,,,, obtained from (4.15) is propor-
tional to the spin-3 “Cotton tensor” studied in [37]. It is the gauge- and g-Weyl- invariant
conserved traceless totally symmetric tensor with the property that if it vanishes then the
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gauge field is g-Weyl-trivial. With this we have completed the demonstration that on the
linear level the spin-3 CS term is a natural generalisation of the spin-2 CS term.
For completeness we add that the combination

oo (5 ToslB] + 9155 (1.10)

reproduces (3.59), which is not g-Weyl invariant.

5 Three-point gauge current correlator: odd parity part

In this section we explicitly compute the 3-point current correlator of the current Jﬁ(w)
The 3-point correlator for currents is given by the triangle diagram. The three external
momenta are ¢, ki, ks. ¢ is incoming, while k1, ko are outgoing and of course momentum
conservation implies ¢ = k1 + k2. The relevant Feynman diagram is

Fave py—i [ P (e L e e ! 5.1
uz/)\(la 2) =1 Wl‘% H’Yu p_kl_m’h p—d-m (5.1)

to which we have to add the cross graph contribution jif/\bc(kl, ko) =J ;;VC *(ka, k1). From
this we extract the odd parity part and perform the integrals. The general method is
discussed in subsection 6.2, here we limit ourselves to the results. Such results have already
been presented in [16], but since they are important for the forthcoming discussion we
summarize them below. For simplicity we set k2 = k3 = 0, so the total energy of the

process is E = \/q? = /2kq1 -ko.

Near the IR fixed point we obtain a series expansion of the type

[e'e) 2n
Fabc(odd) — 1 2 : E abe 7(2n)
Jux (b1, k2) = "32r —" <m> FOLL ) (K, ko) (5-2)

and, in particular, the relevant term in the IR is

70

,LLVA(klﬂ ko) = —12€px. (5.3)

The first thing to check is conservation. The current (2.2) should be conserved also at the
quantum level, because no anomaly is expected in this case. It is evident that the contrac-
tion with ¢* does not give a vanishing result, as we expect because we must include also
the contribution from the 2-point functions, (4.2). But even including such contributions
we get

3 1 1
_S?fabcq,uelw)\ + Efabcey)\gkg + Efabcﬁj)\akg 7& 0. (54)

. . . 0
Conservation is violated by a local term. Thus we can recover it by adding to IP(W)/\(/Q, k2)

a term 4e,, . This corresponds to correcting the effective action by adding a counterterm

—2 / dae™ [0 A% AD AS. (5.5)
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Adding this to the result from the 2-point correlator we reconstruct the full CS action (3.7).

This breakdown of conservation is surprising, therefore it is important to understand
where it comes from. To this end we consider the full theory for finite m. The contraction
of the 3-point correlator with ¢* is given by

3
g TS (1, ka) = /(;ZW) <gT“p1%pr — %11 — m%\Tcp — gl_ m) . (5.6)

Replacing ¢ = (p —m) — (p — ¢ —m) considerably simplifies the calculation. The final result

for the odd parity part (after adding the cross diagram contribution, 1 <+ 2,0 — ¢,v <> \) is

PTG (ki ke) = — = fer,0k] 2arceoth ( o )

—ﬁ L 2mau"ccoth ( e ) ) (5.7)

Therefore, as far as the odd part is concerned, the 3-point conservation (4.3) reads

,uV/\
]' aoc 2m 2 2m
= —Ef b Exve <I<:1 o ——arccoth ( o > + kg k—2arcc0th ( " >>

1 2 2m 2
+ Efabcﬁ/\w (k;" kTarccoth ( o ) + k9 k—?arccoth ( k:T)) =0. (5.8)

Thus conservation is secured for any value of the parameter m. The fact that in the IR
limit we find a violation of the conservation is an artifact of the procedure we have used
(in particular of the limiting procedure) and we have to remedy by subtracting suitable
counterterms from the effective action. These subtractions are to be understood as (part
of) the definition of our regularization procedure.

Something similar can be done also for the UV limit. However in the UV limit the
resulting effective action has a vanishing coupling ~ 7, unless we consider an N — oo
limit theory, as outlined above. In order to guarantee invariance under large gauge trans-
formations we have also to fine tune the limit in such a way that the x coupling be an
integer. But even in the UV we meet the problem of invariance breaking.

We will meet the same problem below for the 3-point function of the e.m. tensor.

6 Three-point e.m. correlator: odd parity part

We go now to the explicit calculation of the 3-point e.m. tensor correlator. The three-point
function is given by three contributions, the bubble diagram, the triangle diagram and the
cross triangle diagram. We will focus in the sequel only on the odd parity part.

6.1 The bubble diagram: odd parity

The bubble diagram is constructed with one Vs vertex and one Vy4¢r vertex. It has an
incoming line with momentum g = k; 4 ko with Lorentz indices u, v, and two outgoing lines
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have momenta ki, ks with Lorentz labels A, p and «, 8, respectively. The internal running
momentum is denoted by p. The corresponding contribution is

D)\paﬁp,l/(kla k2)

i d3p 1 1
= — T t ko — k1)’ ———((2p, — 6.1
128 (27r)3 r[y_m )\paﬁﬂ( 2 1) ﬂ_ﬁ_m(( Pu Q,LL)'YV“‘M(_)V)] (6.1)
where
t)\paﬂa = Ma€pBo T MBE€pac T Npatrfo + NpB€rac- (62)
The odd part gives (the metric is Lorentzian)
2 2
~ m ¢’ —4m lq|
D)\pa/guy(/ﬂ, kg) = %t/\paﬁg(]@ — kl)a <77W’ <2m — ‘q’arctanhm>
2m ¢ —4m’ |4 >>
+4,9y < + 7arctanh . 6.3
wie \ @ P o (03
Saturating with ¢ we get
~ m2 o
qMD)\paﬁ;U/(kla k2) = %t)\paﬂa(k? - k’l) QQI/' (64)
This corresponds to an anomaly
Ag ~ / 4>z 9,6 € 5 W OIS (6.5)
which we have to subtract. This gives
D)\pa,é’uu(kla kZ)
1 o o (2m° | ¢* —4m? 4]
— %t,\pa&,(l@ — k1) (quqy — Nuwq ) < 2 +m PE arctanh2m . (6.6)
Taking the limit of the form factor (last round brackets) for a =0 (UV), we find 0 (the
linear term in {7 vanishes). Taking the limit = fg = (IR) we find
(IR) 2 1 o 2
D)\pa,B,uzx(]ﬁ’ k‘Q) 3 9561 t)\paﬁo(k k’l) (q#qy — nuyq ) . (67)
This corresponds to the action term
~ / &3z (Oh — 0,0, ) trpape (Wa%aﬂ _9TR haﬁ) . (6.8)

6.2 Triangle diagram: odd parity

It is constructed with three V,r; vertices. It has again an incoming line with momentum
q = k1 + ko with Lorentz indices u,v. The two outgoing lines have momenta ki, ko with
Lorentz labels A, p and «, 8, respectively. The contribution is formally written as

1
p—k—m

«%—mm+wﬁm0y<w>

(1) 1 d*p 1
Tuvaprp(krs k2) = “512 ) (2m)3 tr [(}ﬁ o (20— k)rvo + (A < p))

1
to which the cross graph contribution Tﬁ)a aap(F1, k2) = Téi)/\ oap(k2, k1) has to be added.
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The odd part of (6.9) is

m 3

T gap(kr k2) = == (d) r [pro(p — ) vew + (P — KD 8P — D

2p — k1)a(2p — 2k1 — ko)a(2p —
PP = o+ ] <p2(—pmz><l<)$(—il>2 —1m2)(2()29 (—ZV q—)’fna |

(6.10)

where the symmetrization A <> p, « <> 3, u <> v is understood. In order to work out (6.10)
we introduce two Feynman parameters: u integrated between 0 and 1, and v integrated
between 0 and 1 — u. The denominator in (6.10) becomes

[(p— (1 — wky — vk2)* + u(l — w)kf + v(1 — v)k3 + 2uv ky ko — m2}3 .

After taking the traces, we get

1—u
1,0dd o o o
ngu;)m)p(’fl’kz = 128 / / / [€pov (—2pgk{ + k1597 + qpkY)

+ 260,3Vppkg + €pBv (—5]9 + (2p - Q)'kl + m2) + aneo'ﬁTk:irk;]

(2p — k1)a(2p — 2k1 — ko)a(2p — q)
[(p— (1 —u)ky —vkg)2+A)3

(6.11)

where A = u(1 —u) k3 + v(1 — v) k3 + 2uv k1 -kg — m?

So we can shift p — p’ = p — (1 — u)k; — vke and integrate over p’. The p-integrals
can be easily carried out, see appendix D. Unfortunately we are not able to integrate over
u and v in an elementary way. So, one way to proceed is to use Mathematica, which
however is not able to integrate over both u and v unless some simplification is assumed.
Therefore we choose the condition k2 = 0 = k3. In this case the total energy of the process
is E = /¢ = V2k1 Fa.

An alternative way is to use Mellin-Barnes representation for the propagators in (6.10)
and proceed in an analytic as suggested by Boos and Davydychev, [22-24]. This second
approach is discussed in appendix E. In all the cases we were able to compare the two
methods they give the same results (up to trivial terms).

6.3 The IR limit

The IR limit corresponds to m — oo or, better, 7y — oo where E = \/2k1-kz. In this limit
we find one divergent term O(m?) and a series in the parameter 7 starting from the 0-th
order term. The O(m?) term is (after adding the cross contribution)

m2
~ 16r

112 16 16
— €ppv (_(kl k2)u7])\a + ?(11]‘31 + 7k2)a77>\u - ?(71{1 + 11k2)Anau> :| . (6'12)

|:1660,Buk72 (77p>\77a,u + NpaMrp + 77p,u77/\04) + 1660[,,,]{ (nﬁ)ﬁau + NBatp + nﬁu"?)\a)

This term has to be symmetrized under p <> v, A <> p,a <> 5. It is a (non-conserved) local
term. It must be subtracted from the action. Once this is done the relevant term for us
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flodd.IR)

is the 0-th order one. Let us call it B

down in appendix F.2.

(k1,k2). Its lengthy explicit form is written

If we compare this expression plus the contribution from the bubble diagram with
the one obtained from 0553) in F.1, which it is expected to reproduce, we see that they
are different. This is not surprising in view of the discussion of the gauge case: the
next to leading order of the relevant CS action is not straightaway reproduced by the
relevant 3-point correlators, but need corrections. This can be seen also by contracting
T(Odd’IR)(kl, ko) with ¢* and inserting it in the WI (4.9): the latter is violated.

praBip
Now let us Fourier antitransform Tﬁi%}\?(kl,kg) and insert the result in the Wg]
generating function. We obtain a local action term of 3rd order in h,, which we may call
a3
CS

s - Having in mind (4.1), we find instead

s0esP 16008, = YO e #0, (6.13)

where Y2 (&) is an integrated local expression quadratic in h,,, and linear in the diffeomor-
phism parameter £. It is clear that in order to reproduce (4.1) we must add counterterms
to the action, as we have done in the analogous case in section 5. The question is whether
this is possible. We can proceed as follows, we subtract from (6.13) the second equation
in (4.9) and obtain

5O — 0¥ = y@(¢). (6.14)

Therefore 55;3)

to satisfy (4.9) and simultaneously reconstruct the gravitational Chern-Simons action up

- CS!(]?’) is the counterterm we have to subtract from the action in order

to the third order. The procedure seems to be tautological, but this is simply due to the
fact that we already know the covariant answer, i.e. the gravitational CS action, otherwise
we would have to work our way through a painful analysis of all the terms in Y® (&) and
find the corresponding counterterms.%

The just outlined procedure is successful but somewhat disappointing. For the purpose
of reproducing CS_ég) the overall three-point calculation seems to be rather ineffective. One
can say that the final result is completely determined by the two-point function analysis.
Needless to say it would be preferable to find a regularization as well as a way to take the
IR and UV limits that do not break covariance. We do not know it this is possible.

On the other hand the three-point function analysis is important for other reasons.
For brevity we do not report other explicit formulas about the coefficients of the expansion
in % and 7. They all look like correlators, which may be local and non-local. The analysis

of these expressions opens a new subject of investigation.

7 Conclusion

In this paper we have calculated two- and three-point functions of currents in the free
massive fermion model in 3d. We have mostly done our calculations with two different

50f course in the process of defining the regularization and the IR limiting procedure, we are allowed to
subtract all the necessary counterterms (with the right properties) except fully covariant action terms (like
the CS action itself, for one).
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methods, as explained in appendix D and E, and obtained the same results. When the
model is coupled to an external gauge potential and metric, respectively, we have extracted
from them, in the UV and the IR limit, CS action terms for gauge and gravity in 3d. We
have also coupled the massless fermion model to higher spin potentials and explicitly worked
out the spin 3 case, by obtaining a very significant new result in the UV limit: the action
reconstructed from the two-point current correlator is a particular case of higher spin action
introduced a long time ago by [21]; this is one of the possible generalizations of the CS
action to higher spin. It is of course expected that carrying out analogous calculations
for higher spin currents we will obtain the analogous generalizations of Chern-Simons to
higher spin. Our result for the spin 3 case in the IR is an action with a higher spin gauge
symmetry, different from the UV one; we could not recognize it as a well-known higher
spin action.

Beside the results concerning effective actions terms in the UV and IR limit, there are
other interesting aspects of the correlators we obtain as intermediate steps. For instance,
the odd parity current correlators at fixed points are conformal invariant and are limits of
a free theory, but they cannot be obtained from any free theory using the Wick theorem.
There are also other interesting and not understood aspects. For instance, the two-point
e.m. tensor correlators of the massive model can be expanded in series of E/m or m/E,
where F is the relevant energy, the coefficients in the expansion being proportional always
to the same conformal correlator. For the three-point functions the situation is more
complicated, there is the possibility of different limits and the expansion coefficients are
also nonlocal. Still, however, we have a stratification similar to the one in the two-point
functions with coefficient that look like conserved three-point correlators (but have to be
more carefully evaluated). One would like to know what theories these correlators refer to.

Finally it would be interesting to embed the massive fermion model in an AdSy geom-
etry. One can naively imagine the AdSy space foliated by 3d submanifolds with constant
geodesic distance from the boundary and a copy of the theory defined on each submanifold
with a mass depending of the distance. This mass could be generated, for instance, by
the vev of a pseudoscalar field. This and the previous question certainly deserve further
investigation.
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A Gamma matrices in 3d

In 2 + 1 dimensions we may take the gamma matrices, [38], as
0 —: 0 —i v 0
p—y = = —' g p—y ) p— . A_']_
Y0 = 02 (z 0), 7 101 (—i 0>7 Y2 =103 <O—i> (A.1)

— 95—



They satisfy the Clifford algebra relation for the anticommutator of gamma matri-
ces, namely

{’7}17 ’71/} = 277,uua

For the trace of three gamma matrices we have

tr (Y Yp) = —2i€ump,

Properties of gamma matrices in 3d:

tr ('VM'YV) = 200,
tr (Vv p) = —2i€p,

tr ('7;/71/7#70) =2 (nuunpo = NupMvo + 77u077up) )
[y, 307} = —jehoo

Yo Yu Vv = _iﬁcryu + NuoYv — Nov Y + NuvYo (A2)
tr (Yo VA Vo) = =20 (Euallop + Nuv€aro = Mur€ovp + Muropp) (A.3)

Identity for € and 7 tensors:

Nuv€xpoe — NMuA€vpo T Nup€vre — Nuo€vrp = 0

Finally, to make contact with the spinorial label notation of ref. [21] one may use the
symmetric matrices

(F0)ap = i(70)a" €8, (M)ap = (M)a" €8, (F2)ap = —(72)a €485 (A.4)
where € is the antisymmetric matrix with €2 = —1, and write

haiasazasasas = Rabe(Y*)aras ('NVb)asazL (Y)asae 8a(:}’a€)aﬁ = aaﬁ, etc.  (A.5)
Wick rotation. Among the various conventions for the Wick rotation to compute Feyn-
man diagram, we think the simplest one is given by the following formal rule on the metric:

Nuw — —nfﬁ). This implies

1
Kk — _(k(E))27 PuPv — g(p(E))2 77;8]5)7 cee

We have also to multiply any momentum integral by ¢. For the sake of simplicity we always
understand the superscript &).

B Invariances of the 3d free massive fermion

In the theory defined by 2.4 there is a problem connected with the presence of /g = e
in the action. When defining the Feynman rules we face two possibilities: 1) either we
incorporate /e in the spinor field 1, so that the factor /g in fact disappears from the
action, or, 2), we keep the action as it is.
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In the first case we define a new field ¥ = /et). The new action becomes
S = / d*z [iVENY*V, U — mUy] . (B.1)

due essentially to the fact that V,g,, = 0. The action is still diff-invariant provided ¥
transforms as

1
0¥ = €10,V + ivugw (B.2)
In the case m = 0 we also have Weyl invariance with
1
d¥ = iw\ll, instead of 0w = wip, (B.3)

So the simmetries are classically preserved while passing from ¢ to ¥. From a quantum
point of view this might seem a Weyl transformation of ¥, but it is not accompanied by a
corresponding Weyl transformation of the metric. So it is simply a field redefinition, not a
symmetry operation.

Alternative 1) is the procedure of Delbourgo-Salam. The action can be rewritten

) — > _ 1 _
S = /d3x [;\I/Eéjfy“ OV —mUuV¥ + iEfjwubce“bC\I'\Il . (B.4)
In this case we have one single graviton-fermion-fermion vertex Vj ¢, represented by

é (040 + 0+ D)7, (B.5)

and one single 2-gravitons-2-fermions vertex Vi ;s given by

1 A
Et/‘V“,V/A(k ) (B.6)
where
t,uzzu’u’/\ = Nup' €vv' X + Mo €' X + N/ €upr X+ Mo €ppr s <B7)
the fermion propagator being .
(3
PpP—m+ie

The convention for momenta are the same as in [17, 19].
Alternative 2) introduces new vertices. In this case the Lagrangian can be written

7 - PR ) _
L= 209" 9ato—imiy
i - app g i NToas i A 7
t ¥ e 0+ X" da ¥ — Ghymyy (B.8)
i _ o 1 -
+SPRV Y hG O — e heBay €
As a consequence we have three new vertices. A vertex V; 7§ coming from the mass term

1
- immwl? (Bg)
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another V.. . coming from the kinetic term

%‘nuu(ﬁ +¢/) (B.10)

!
and a new vaff

i
S [P+ 0wy + 0+ 1)) (B.11)

An obvious conjecture is that the two procedures lead to the same results, up to trivial
terms. But this has still to be proved.

In this paper we follow alternative 1 only.

C Perturbative cohomology

In this appendix we define the form of local cohomology which is needed in perturbative
field theory. Let us start from the gauge transformations.

SA = dX\+[A, N, 5/\:—%[/\,)\]+, 52=0, A=\(2)T" (C.1)

To dovetail the perturbative expansion it is useful to split it. Take A and A infinitesimal
and define the perturbative cohomology

sOA = d, 50N =0, (6©)? =0
dMWA =14, SN = — %[A, M+
sO5M 4 5M§0) = ¢ (M) =0 (C.2)

The full coboundary operator for diffeomorphisms is given by the transformations

5§guu = v,uéu + V.6, 5§§# = 5)\8)\5“ (C3)

with §, = gu,§”. We can introduce a perturbative cohomology, or graded cohomology,
using as grading the order of infinitesimal, as follows

Guw =N + by g™ =0 = B+ AR 4 (C.4)
The analogous expansions for the vielbein is
a __ 5@ + a + }wa +
€ =0+ Xpt 5%t
Since eZnabelb, = hy,, we have

1 1
Xuv = ihm/y w,ul/ = _XZX(ZZ/ = _Zhﬁh)\w ce (C5)
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ab

This leads to the following expansion for the spin connection wy

1 1 1
w? = 56”“ (8“615 - 8,/62) - ie”b (Oue — Gl,eZ) - iep“e"b (Opeoe — Osepe) €5, (C.6)

# w
= —% (ont, — 0"n) - % (n70unt, — n70hs ) + i (A0l — h* 0,1,
f% (h70,hf, — h7 0,13 ) éh; (ot — on2)

1 a a
- (9 (mpng) — 0 (m%) ) + ..

Inserting the above expansions in (C.3) we see that we have a grading in the transfor-
mations, given by the order of infinitesimals. So we can define a sequence of transformations

_ 50), (1) | £(2)
0g =0g + 0 +07 +...
At the lowest level we find immediately

5§0)hﬂu = Oué + 0y, 5é0)§u =0 (C.7)

and £, = &*. Since (6é0))2 = 0 this defines a cohomology problem.
At the next level we get

6y = 0Ny + 0, My + 0, hyn, R = oze (C.3)
One can verify that

@2=0 6750 +56% =0, (8))2=0 (C.9)

Proceeding in the same way we can define an analogous sequence of transformations
for the Weyl transformations. From g¢,, = 1., + hu and 6,h,, = 2wg,, we find

w

O, = 20m, WMk = 2wl 6Phu, =0,... (C.10)

as well as 5&0)(4; = 50(})0() =0,....

Notice that we have 5éo)w =0, 5él)w = ¢*0)w. As a consequence we can extend (C.9)
to

(6" + 000 +80) + (3" + ) (5" +6) =0 (C.1)
and (5§1)(5(9) + 6&1)5é1) = 0, which together with the previous relations make
(87 + 80 + 5 + )2 =0 (C.12)

For what concerns the higher tensor field By, in this paper we use only the lowest
order transformations given by (2.12) and (2.13).
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D Useful integrals

The Euclidean integrals over the momentum p we use for the 2-point function are:

dp 1 11

/(271’)3 (p2+A)2 - SW\/K’ (Dl)
dPp pP 3

/ @2m)* (P2 +A) 87 & (b2)
dp  pt 5 4

/ @2m)* (2 + A T (B3)

where A = m? + 2 (1 — x) k? and for the 3-point functions

d3p 1 11

/ (27m)3 (p2 + A)3 = @E (D.4)
d#p p 31

/ (27m)3 (p2 + A)3 - @ﬁ (D.5)
&ep 15

/ 23 (P2 + AP~ 327 A (D.6)

where A = m? +u(1 —u)k? + v(1 — v)k2 + 2uvk;-ke. In these formulae z, u, v are Feynman
parameters.

Sample calculation. As an example of our calculations we explain here some details

of the derivation in 3.2. To make sense of the integral in (3.10) we have to go Euclidean,
which implies p> — —p?, k2 — —k?2, Ny — — Ny and d3p — id®p. Therefore

o 042 + (22 — 1)2k,k v
T ®) / / [ 7ok [Zp = TR (i - p)] - (D7)

Next we use the appropriate Euclidean integrals above to integrate over p and get

1

+(odd) _ m o
T,uu)\p (k) = _2567T dx Ecrupk
1 (22 —1)2 > v
X | 4 (m? + (1 — 2)E%)2 + k,ky + (D.8)
( ' T a(i-a))r )\ A
The x integrals are well defined:
! 1 1 k% 4 4m? k
/0 dz (m? + z(1 — )kQ)% =gm + 4—;—k|m arctan 2‘77L (D.9)
! 2z —1)? k? + 4m? k
/ dx (22 —1) T = —2% + +73m aurctanu (D.10)
0 (m? 4+ x(1 —x)k?)2 k || 2m
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Therefore the result is

2 2
Z(odd) M k% +4m ||
Tu?,)\p (k) = 2567 €ovp k? [—77;»\ <2m + T arctan o

k, kv k2 + 4m? || JIR =N
_9 2T arctan —-
+ 12 < m + ] arc an2m + Ao p
m o k#k»\

kuka\ k2 + 4m? k
+<_77u/\+ £ A) +am arctanH] + ('LLHV) (D.11)

k2 k| 2m A p

The final step is to return to the Lorentzian metric, k2 — —k? and N — —Nuw,
arctan % — iarctanh%.

E An alternative method for Feynman integrals

An alternative method to calculate Feynman diagrams was introduced in a series of paper
by A. I .Davydychev and collaborators, [22-24]. The basic integral to be computed in our
case are

d? 1
J2(d: o, fim) = / (ZW];d (p? —m2)* ((p — k)% — m2)” (=
and
) o dp 1
Bidion i) = [ s R (B2

with ¢ = k1 + ko. Following [22-24] these can be expressed, via the Mellin-Barnes repre-
sentation of the propagator, as

Z'l—d (_mQ)%—a—

Jo(d; o, B;m) = (4m)i T ()T (B)
du B2\ Pla+u) T (B+u)l (a+8-§+u
x m<_m2> D(-u - )1(“(a+)ﬂ452U) e w
and

J3(d; Y o G Ea
3(d; o, B,y;m) = (47r)% L(a)T(B)T(7)

ds dt du k3 5 q? t k2 u
222 CE) (L) (=22 r(—s)T(—t)I(-
27Ti27r7j27m'< m2> ( m2> < m2) (=s)T(=t)'(~u)

y T(a+B+y—2+s+t+u)l(a+s+ DB +s+u) +T(y+t+u)
Fla+ B +v+2s+ 2t + 2u)

(E.4)

The integrals run from —ioco to 100 along vertical contours that separate the positive poles
of the I'’s from the negative ones. Positive poles are those of I' (—u) in the case of Js
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or those of I'(—s)I'(—t)I'(—u) in the case of J3, negative poles are the others. It is clear
that the contours of integration must cross the real axis just to the left of the origin. The
contours close either to the left or to the right in such a way as to assure convergence of
the series. Let us analyse more closely the case of Js to better understand how this works.
Using the duplication formula of the gamma function, i.e.

r(za::22%4w—%r(zyr<z4-;> (E.5)

we are able to recast (E.3) into the form

[S1ISW

ﬁ(_m2) —a—ﬂr(a?igr(%ﬂﬂ) / du < k2 )u

(4m)3 T()T(B)T (a+p) ) 2mi \ 4m?
Fa+u) D (B+u)T (a+B—-%+
« T (—y) LLOF OB )l (o f 3 +) (E.6)
P(“T*BJru)P(%Jru)
Assuming ‘%‘ < 1 (IR region), we must close the contour of integration on the right

(Re(u) > 0) in order to guarantee convergence of the result and by doing so we will
pick-up the poles of I' (—u). For a« = =1 and d = 3 we obtain

JoR(3;1,1;m) ! i £\ 1 ! tanh K (E.7)
;1,1im) = = arctan — . .
2 A Selm| g \dm? ) 2j+1  4nlk| 4m?

On the other hand, assuming ‘% > 1 (UV region), we need to close the integration
contour on the left. For « = = 1 and d = 3, we will have poles at u = —% and at

u=—1,—2,-3,..., hence

(1, 1m) = L
BB = (” g *Z( ¥ ) @-1

1 i 4m?
= ——— 4+ ——arctanh — . E.
ST + 47T|k’arc an < 2 > (E.8)

As far as (E.4) is concerned, in this paper we are interested in particular in the IR
2

region, which is the one where m* is much larger than k‘%, k‘%, ¢ in the case of J3. This
requires that the relevant powers s, ¢, v in the integrands be positive, and, so, the contours
must close around the poles of the positive real axis, that is the poles of T'(—s)I'(—¢)['(—u).

An easy calculation gives

o at+pf+v-3)

Lla+B+7)

J3(d; o, B,y;m) = . (_m2)%7a,5,vr(
(4m)2

w @y [AHBTY-SaB R @ K

, , , (E.9
a+ B+~ m2’ m2’ m?2 (E.9)
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where ®3 is a generalized Lauricella function:

ai, ag, as, aq
@3[7 s U3, ‘

21,22, Z3]

[oe)
= Z Z > i@g (@0) g1t 50 (92)in 152 (98)in 130 (94)io s 4
71=0 j2=0 jo= 0‘71 ‘72 '73 (c)2j1+2j2+2j3

T'(a+n) .
I'(a)
one given by ji1 = jo = j3 = 0, i.e. by setting ®3 =1 in (E.9).

where (a), =

is the Pochammer symbol. The leading term in the IR is clearly the

In general, we need to evaluate not only (E.2) but more general integrals

d? Dy
Tone.pna (d; 0 B,75m) :/ G e T (e oy e e e R

One can prove by induction that the following formula holds in general

1 A
B icspiim) = X (=3) @0 {0 ) ™ )
A\K1,K2,K3

X (@), (B)ry (Mg J3(d +2(M = A);a + k1, B+ Ko,y + k3;m), (E.12)

JEEsY;

where the symbol {[n]*[g1]"" ... [gn]"" },1..uy, Stands for the complete symmetrization of
the objects inside the curly brackts, for example

{TICH},“MMB = Mpapo Qps + Murps iz T Mpops Ly -

F Third order gravity CS and 3-point e.m. correlator

In this appendix we collect the result concerning the odd parity 3-point function of the
e.m. tensor and its relation to the third order term in gravitational CS action.

F.1 The third order gravitational CS

From the action term (4.6), by differentiating three times with respect to h, (x),hx,(y) and
hap(z) and Fourier-transforming the result one gets the sum of the following local terms
in momentum space (they feature in the same order they appear in (4.6),

K1
Z Z k kT (EMUT<QQ77V/\77p,B - Qpnyan)\ﬁ) + EAUT(klaT/upnuﬂ kll/nuanpﬁ)

+eaor (F2uNuprg — kZAnuﬁnup)) (F.1)
g %%Aa ( — ky-ka (k1pmgy — kagnipy + (k2 — k1)unpp)

+k3 (n5pk1y — Mpkg) + ki (npykay — ?76p7<72u)) (F-2)
g ieum (k18qpkay — k1vqskap) (F.3)
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K1 o o
11 (e,mq (a8Mwx — v ) k2p + €400’ (QpMvs — 4870p) K1
+exack] (k1Mup — k1umpp) k2w + €arakd (k2pnus — k2unpp) kv
+€u/\aki'(klu77,8p - klﬂnpu)QQ + €uaakg(k2u77p,8 - k2p77,81/)q/\) (F4)
K 1
_Z g (ﬁ/pg (qUQa(kQ,u - klu)"?)\ﬁ - kirkla(k'%\ + (D\)nuﬁ)
+€v80 (qUQ)\(klu - k2u)77ap - kngA(kla + qa)nup)
e (T Kt (kox + @) — Kz (k1 + da)n) ) (£.5)
K1
Z g <€a)\a(776,u77pu(k1 ki-ko — kQ ko- Q) + nﬁunpu(kl ki-q — kQ k- k2))
+eopa(MpATvp(q7q- k2 + k3 k1-k2) + ngpmua(—q"k1-q + k3q-k2))
+eoun(Mpnpal(q”q k1 + kT k1-k2) + Nuamps(—q7k2-q + qu-kl))) (F.6)
K1 o o
Z g [eaﬁunupkz (na)\k% - kQ)\kZa) + Eoﬁz\nuka (nal/kg - k2uk2a)

teopusk] (Marki — kinkia) + €opatusks (mwki — k1vkin)
_eauﬁnapnu)\ng2 - eaupnaunﬂkqoqz + Eaupna)\qUQﬁQV + 5aua776quQ>\QV} (F7)

These terms must be simmetrized under p < v, A <> p,a <> . They are expected to
correspond to odd-parity 3-point e.m. tensor correlator.

F.2 The IR limit of the 3-point e.m. correlator

The 0-th order term, after adding the cross contribution, is given (up to an overall multi-
plicative factor of {5555- 32 ) by

(0odd,IR)
Tang (b1 ko) = oo — Z T4 s (k1 2) (F.8)

where

4 4 4
(‘T,(W))\paﬁ(kla k2) = _eaﬁukg |:3k1 'k2 (npknau +"7pa77)\u+77pu"7/\oc)+*Qak2;ﬂ7p>\ - gklakﬁ)\npu

3

2
=Ma 20k + k1p(k1 — k2) )

2
_gn)\,u(q(xklp + kla‘]p + klaka) + 3

4 2
"‘gkl,uq/\nocp + gnua(quJq/\ + klpq/\ + ka2)\ + k?pk2)\):|

2
+§€aﬁuk‘fk2p [(lﬁ — k2)ura + (¢ + k2)anua — (¢ + kl)oﬂ?)\u} (F.9)

4 4 4
‘T,(W)Apag(kh’fz) = —€opuk] [3k1'k‘2 (6T +agne +5uM0a) + 5 OK1uGa — 5 K1akaaTs,

3

2
=Ma(2q8k2,+kog(ka — k1)u)

2
+§77Au(26]a% +ki1aq+akop+kiakip)+ 3

4 2
+§k2,uQa77)\5 - gn,ua(QBkQ)\ + k26‘])\ + k2)\k15):|

2
_gfapukgklﬂ [(kz — k1) umna — (@ + k2)anua + (@ + k1)amrp (F.10)
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Tioapas (k1. k2) = oo [wkl-kz(/ﬂ — k2)utior — k1 (15K + 441 ot (F.11)

1 1
+§k1'k2(44k2 + 15k1)>\770¢li — Bklakl)\(llkl + 47k2)u

1 1 1
+ﬁk2ak2)\(4k2+7kl)u+gklakQ)\(k? - kl)u“‘ﬁ]@akl)\(g’?kl + 37?2)“]
(4) o1t [ 2 2 2
Tiapap = ~Nov€oprki ks gﬁua(lﬁ + 2k2) 5 + gnz\a(kl — ko) — 577;0\(2]431 +k2)a

2 2 2
_nﬁufakagkI (‘377;w¢(k1+2k2))\+377)\a(k2 - kl)u + gm,\(%l + k?)oz) .
(F.12)
This must be simmetrized under p <> v, A < p,a <> B. The IR limit is entirely local.
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