739 research outputs found
What is absolutely continuous spectrum?
This note is an expanded version of the author's contribution to the
Proceedings of the ICMP Santiago, 2015, and is based on a talk given by the
second author at the same Congress. It concerns a research program devoted to
the characterization of the absolutely continuous spectrum of a self-adjoint
operator H in terms of the transport properties of a suitable class of open
quantum systems canonically associated to H
Cooper pair sizes in superfluid nuclei in a simplified model
Cooper pair sizes are evaluated in a simple harmonic oscillator model
reproducing the values of sophisticated HFB calculations. Underlying reasons
for the very small sizes of 2.0-2.5 fm of Cooper pairs in the surface of nuclei
are analysed. It is shown that the confining properties of the nuclear volume
is the dominating effect. It is argued that for Cooper pair sizes LDA is
particularly inadapted.Comment: 8 pages, 6 figure
Generic strong coupling behavior of Cooper pairs in the surface of superfluid nuclei
With realistic HFB calculations, using the D1S Gogny force, we reveal a
generic behavior of concentration of small sized Cooper pairs (2-3 fm) in the
surface of superfluid nuclei. This study confirms and extends previous results
given in the literature that use more schematic approaches.Comment: 5 pages, 5 figure
Particle-particle random phase approximation applied to Beryllium isotopes
This work is dedicated to the study of even-even 8-14 Be isotopes using the
particle-particle Random Phase Approximation that accounts for two-body
correlations in the core nucleus. A better description of energies and
two-particle amplitudes is obtained in comparison with models assuming a
neutron closed-shell (or subshell) core. A Wood-Saxon potential corrected by a
phenomenological particle-vibration coupling term has been used for the
neutron-core interaction and the D1S Gogny force for the neutron-neutron
interaction. Calculated ground state properties as well as excited state ones
are discussed and compared to experimental data. In particular, results suggest
the same 2s_1/2-1p_1/2 shell inversion in 13Be as in 11Be.Comment: to appear in Phys. Rev.
Diffusion of wave packets in a Markov random potential
We consider the evolution of a tight binding wave packet propagating in a
time dependent potential. If the potential evolves according to a stationary
Markov process, we show that the square amplitude of the wave packet converges,
after diffusive rescaling, to a solution of a heat equation.Comment: 19 pages, acknowledgments added and typos correcte
Comparison of solar photospheric bright points between SUNRISE observations and MHD simulations
Bright points (BPs) in the solar photosphere are radiative signatures of
magnetic elements described by slender flux tubes located in the darker
intergranular lanes. They contribute to the ultraviolet (UV) flux variations
over the solar cycle and hence may influence the Earth's climate. Here we
combine high-resolution UV and spectro-polarimetric observations of BPs by the
SUNRISE observatory with 3D radiation MHD simulations. Full spectral line
syntheses are performed with the MHD data and a careful degradation is applied
to take into account all relevant instrumental effects of the observations. It
is demonstrated that the MHD simulations reproduce the measured distributions
of intensity at multiple wavelengths, line-of-sight velocity, spectral line
width, and polarization degree rather well. Furthermore, the properties of
observed BPs are compared with synthetic ones. These match also relatively
well, except that the observations display a tail of large and strongly
polarized BPs not found in the simulations. The higher spatial resolution of
the simulations has a significant effect, leading to smaller and more numerous
BPs. The observation that most BPs are weakly polarized is explained mainly by
the spatial degradation, the stray light contamination, and the temperature
sensitivity of the Fe I line at 5250.2 \AA{}. The Stokes asymmetries of the
BPs increase with the distance to their center in both observations and
simulations, consistent with the classical picture of a production of the
asymmetry in the canopy. This is the first time that this has been found also
in the internetwork. Almost vertical kilo-Gauss fields are found for 98 % of
the synthetic BPs. At the continuum formation height, the simulated BPs are on
average 190 K hotter than the mean quiet Sun, their mean BP field strength is
1750 G, supporting the flux-tube paradigm to describe BPs.Comment: Accepted for publication in Astronomy & Astrophysics on May 30 201
Quantum Hypothesis Testing and Non-Equilibrium Statistical Mechanics
We extend the mathematical theory of quantum hypothesis testing to the
general -algebraic setting and explore its relation with recent
developments in non-equilibrium quantum statistical mechanics. In particular,
we relate the large deviation principle for the full counting statistics of
entropy flow to quantum hypothesis testing of the arrow of time.Comment: 60 page
- …