40 research outputs found
2-я Международная конференция «Высокочистые материалы: получение, применения, свойства»
17–20 сентября 2013 года в Харькове проходила 2-я Международная конференция «Высокочистые материалы: получение, применения, свойства», посвященная памяти академика НАН Украины Владимира Михайловича Ажажи. В организации Конференции приняли участие: Национальная академия наук Украины, Отделение ядерной физики и энергетики НАНУ, Национальный научный центр «Харьковский физико-технический институт», Харьковский национальный университет им. В.Н. Каразина. В работе Конференции приняло участие более 50 человек
A stable genetic polymorphism underpinning microbial syntrophy
Syntrophies are metabolic cooperations, whereby two organisms co-metabolize a substrate in an interdependent manner. Many of the observed natural syntrophic interactions are mandatory in the absence of strong electron acceptors, such that one species in the syntrophy has to assume the role of electron sink for the other. While this presents an ecological setting for syntrophy to be beneficial, the potential genetic drivers of syntrophy remain unknown to date. Here, we show that the syntrophic sulfate-reducing species Desulfovibrio vulgaris displays a stable genetic polymorphism, where only a specific genotype is able to engage in syntrophy with the hydrogenotrophic methanogen Methanococcus maripaludis. This 'syntrophic' genotype is characterized by two genetic alterations, one of which is an in-frame deletion in the gene encoding for the ion-translocating subunit cooK of the membrane-bound COO hydrogenase. We show that this genotype presents a specific physiology, in which reshaping of energy conservation in the lactate oxidation pathway enables it to produce sufficient intermediate hydrogen for sustained M. maripaludis growth and thus, syntrophy. To our knowledge, these findings provide for the first time a genetic basis for syntrophy in nature and bring us closer to the rational engineering of syntrophy in synthetic microbial communities
Localization of NAD(P)H Dehydrogenase in the Cyanobacterium Synechocystis sp. Strain PCC 6803
Antibodies raised against NdhH and NdhB detected these proteins in the thylakoid membrane of Synechocystis sp. strain PCC 6803, but not in a purified cytoplasmic membrane. We conclude that NAD(P)H dehydrogenase is largely, if not exclusively, confined to the thylakoid membrane
Oxygen reduction in the strict anaerobe Desulfovibrio vulgaris Hildenborough: characterization of two membrane-bound oxygen reductases
International audienceAlthough Desulfovibrio vulgaris Hildenborough (DvH) is a strictly anaerobic bacterium, it is able to consume oxygen in different cellular compartments, including extensive periplasmic O(2) reduction with hydrogen as electron donor. The genome of DvH revealed the presence of cydAB and cox genes, encoding a quinol oxidase bd and a cytochrome c oxidase, respectively. In the membranes of DvH, we detected both quinol oxygen reductase [inhibited by heptyl-hydroxyquinoline-N-oxide (HQNO)] and cytochrome c oxidase activities. Spectral and HPLC data for the membrane fraction revealed the presence of o-, b- and d-type haems, in addition to a majority of c-type haems, but no a-type haem, in agreement with carbon monoxide-binding analysis. The cytochrome c oxidase is thus of the cc(o/b)o(3) type, a type not previously described. The monohaem cytochrome C(553) is an electron donor to the cytochrome c oxidase; its encoding gene is located upstream of the cox operon and is 50-fold more transcribed than coxI encoding the cytochrome c oxidase subunit I. Even when DvH is grown under anaerobic conditions in lactate/sulfate medium, the two terminal oxidase-encoding genes are expressed. Furthermore, the quinol oxidase bd-encoding genes are more highly expressed than the cox genes. The cox operon exhibits an atypical genomic organization, with the gene coxII located downstream of coxIV. The occurrence of these membrane-bound oxygen reductases in other strictly anaerobic Deltaproteobacteria is discussed
Growth of theobligate anaerobe Desulfovibrio vulgaris Hildenborough under continuous low oxygen concentration sparging : impact of the membrane- bound oxygen reductases
Although obligate anaerobe, the sulfate-reducing bacterium Desulfovibrio vulgaris Hilden-borough (DvH) exhibits high aerotolerance that involves several enzymatic systems, including two membrane-bound oxygen reductases, a bd-quinol oxidase and a cc(b/o)o(3) cytochrome oxidase. Effect of constant low oxygen concentration on growth and morphology of the wild-type, single (Delta bd,Delta cox) and double deletion (Delta coxbd) mutant strains of the genes encoding these oxygen reductases was studied. When both wild-type and deletion mutant strains were cultured in lactate/sulfate medium under constant 0.02% O-2 sparging, they were able to grow but the final biomasses and the growth yield were lower than that obtained under anaerobic conditions. At the end of the growth, lactate was not completely consumed and when conditions were then switched to anaerobic, growth resumed. Time-lapse microscopy revealed that a large majority of the cells were then able to divide (over 97%) but the time to recover a complete division event was longer for single deletion mutant Delta bd than for the three other strains. Determination of the molar growth yields on lactate suggested that a part of the energy gained from lactate oxidation was derived toward cells protection/repairing against oxidative conditions rather than biosynthesis, and that this part was higher in the single deletion mutant Delta bd and, to a lesser extent, Delta cox strains. Our data show that when DvH encounters oxidative conditions, it is able to stop growing and to rapidly resume growing when conditions are switched to anaerobic, suggesting that it enters active dormancy sate under oxidative conditions. We propose that the pyruvate-ferredoxin oxidoreductase (PFOR) plays a central role in this phenomenon by reversibly switching from an oxidative-sensitive fully active state to an oxidative-insensitive inactive state. The oxygen reductases, and especially the bd-quinol oxidase, would have a crucial function by maintaining reducing conditions that permit PFOR to stay in its active state
Crystal structure of the atypical thioredoxin reductase TRi from Desulfovibrio vulgaris Hildenborough
The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway
International audienc
