21 research outputs found

    Macrophage Migration Inhibitory Factor Is Enhanced in Acute Coronary Syndromes and Is Associated with the Inflammatory Response

    Get PDF
    Chronic inflammation promotes atherosclerosis in cardiovascular disease and is a major prognostic factor for patients undergoing percutaneous coronary intervention (PCI). Macrophage migration inhibitory factor (MIF) is involved in the progress of atherosclerosis and plaque destabilization and plays a pivotal role in the development of acute coronary syndromes (ACS). Little is known to date about the clinical impact of MIF in patients with symptomatic coronary artery disease (CAD).In a pilot study, 286 patients with symptomatic CAD (n = 119 ACS, n = 167 stable CAD) undergoing PCI were consecutively evaluated. 25 healthy volunteers served as control. Expression of MIF was consecutively measured in patients at the time of PCI. Baseline levels of interleukin 6 (IL-6), “regulated upon activation, normal T-cell expressed, and secreted” (RANTES) and monocyte chemoattractant protein-1 (MCP-1) were measured by Bio-Plex Cytokine assay. C-reactive protein (CRP) was determined by Immunoassay. Patients with ACS showed higher plasma levels of MIF compared to patients with stable CAD and control subjects (median 2.85 ng/mL, interquartile range (IQR) 3.52 versus median 1.22 ng/mL, IQR 2.99, versus median 0.1, IQR 0.09, p<0.001). Increased MIF levels were associated with CRP and IL-6 levels and correlated with troponin I (TnI) release (spearman rank coefficient: 0.31, p<0.001). Patients with ACS due to plaque rupture showed significantly higher plasma levels of MIF than patients with flow limiting stenotic lesions (p = 0.002).To our knowledge this is the first study, demonstrating enhanced expression of MIF in ACS. It is associated with established inflammatory markers, correlates with the extent of cardiac necrosis marker release after PCI and is significantly increased in ACS patients with “culprit” lesions. Further attempts should be undertaken to characterize the role of MIF for risk assessment in the setting of ACS

    An exploration of secondary students' mental states when learning about acids and bases

    Get PDF
    This study explored factors of students’ mental states, including emotion, intention, internal mental representation, and external mental representation, which can affect their learning performance. In evaluating students’ mental states during the science learning process and the relationship between mental states and learning achievement, valid, reliable, and scalable measures of students’ mental states and learning achievement are needed. This paper presents the development of the Mental State Conceptual Learning Inventory (MSCLI) to identify students’ mental states before and after learning about acids and bases. This instrument is time efficient and convenient and can be administered to large student samples so that teachers and researchers can gain profound insights into their students’ learning of acids and bases in science class. The results of this study indicate that students’ mental states are highly correlated with their achievement. As a whole, low-achieving students tended to have negative emotions and low intentions, were not good at internal visualization, and were unable to interpret graphics and draw pictures. In contrast, high-achieving students had positive emotions and intentions when learning life-related topics about acids and bases, and were good at internal visualization and drawing and interpreting graphics

    Macrophage migration inhibitory factor is critically involved in basal and fluoxetine-stimulated adult hippocampal cell proliferation and in anxiety, depression, and memory-related behaviors.

    Get PDF
    Intensive research is devoted to unravel the neurobiological mechanisms mediating adult hippocampal neurogenesis, its regulation by antidepressants, and its behavioral consequences. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that is expressed in the CNS, where its function is unknown. Here, we show, for the first time, the relevance of MIF expression for adult hippocampal neurogenesis. We identify MIF expression in neurogenic cells (in stem cells, cells undergoing proliferation, and in newly proliferated cells undergoing maturation) in the subgranular zone of the rodent dentate gyrus. A causal function for MIF in cell proliferation was shown using genetic (MIF gene deletion) and pharmacological (treatment with the MIF antagonist Iso-1) approaches. Behaviorally, genetic deletion of MIF resulted in increased anxiety- and depression-like behaviors, as well as of impaired hippocampus-dependent memory. Together, our studies provide evidence supporting a pivotal function for MIF in both basal and antidepressant-stimulated adult hippocampal cell proliferation. Moreover, loss of MIF results in a behavioral phenotype that, to a large extent, corresponds with alterations predicted to arise from reduced hippocampal neurogenesis. These findings underscore MIF as a potentially relevant molecular target for the development of treatments linked to deficits in neurogenesis, as well as to problems related to anxiety, depression, and cognition

    Les facteurs predectifs des echecs de la pharyngotomie au cours de la rhonchopathie chronique

    No full text
    No Abstract. Journal Tunisien d\'ORL et de chirurgie cervico-faciale Vol. 17 2006: pp. 25-2

    Manifestations ORL revelatrices de leucemie aigue a propos de trois observations

    No full text
    No Abstract. Journal Tunisien d\'ORL et de chirurgie cervico-faciale Vol. 17 2006: pp. 60-6

    Isothiocyanates inhibit proteasome activity and proliferation of multiple myeloma cells

    No full text
    Isothiocyanates (ITCs), including benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC) and sulforaphane, compounds found in cruciferous vegetable, are highly effective in inducing cell cycle arrest and apoptosis in a variety of cancer cells and animal models. Although some studies indicate that ITC-induced reactive oxygen species (ROS) generation may underlie apoptosis induction, our recent studies show that covalent binding to target proteins may be an important event triggering apoptosis. In this study, we report that BITC and PEITC significantly inhibit proteasome activity in a variety of cell types. Further studies show that ITCs inhibit both the 26S and 20S proteasomes, presumably through direct binding, and that this inhibition is unrelated to either ROS generation or ITC-induced protein aggregation. The potency of ITC-induced proteasome inhibition correlates with the rapid accumulation of p53 (tumor suppressor) and IÎșB nuclear factor-kappaB (nuclear factor-kappaB inhibitor). Finally, our results demonstrate that BITC and PEITC, the two strongest proteasome inhibitors, significantly suppress growth of multiple myeloma (MM) cells through induction of cell cycle arrest at G2/M phase and apoptosis. This study suggests that proteasome, like tubulin, is a potential molecular target of ITCs, thus providing a novel mechanism by which ITCs strongly inhibit growth of MM cells and new leads in identifying compounds with therapeutic and preventative efficacies for MM. It also supports the future studies of ITCs as therapeutic and preventive agents for MM
    corecore