224 research outputs found
Resonance testing of space shuttle thermoacoustic structural specimen
The resonance testing of a structural specimen related to the space shuttle vehicle is described. The specimen consisted of a thin aluminum skin reinforced by hat-section stringers and supported by two ribs or bulkheads of corrugated web. A representative section of the space shuttle thermal protection system was bonded to the outer surface of the skin. The tests were completed by using miniature accelerometers to collect vibration data from locations forming a predetermined mesh over the tiles and base structure. The signals were recorded on FM magnetic tape and subsequently analyzed on a modal analysis system
Toward quantification of strain-related mosaicity in shocked lunar and terrestrial plagioclase by in situ micro-X-ray diffraction
Studies of shock metamorphism of feldspar typically rely on qualitative petrographic observations, which, while providing invaluable information, can be difficult to interpret. Shocked feldspars, therefore, are now being studied in greater detail by various groups using a variety of modern techniques. We apply in situ micro-X-ray diffraction (μXRD) to shocked lunar and terrestrial plagioclase feldspar to contribute to the development of a quantitative scale of shock deformation for the feldspar group. Andesine and labradorite from the Mistastin Lake impact structure, Labrador, Canada, and anorthite from Earth's Moon, returned during the Apollo program, were examined using optical petrography and assigned to subgroups of the optical shock level classification system of Stöffler (1971). Two-dimensional μXRD patterns from the same samples revealed increased peak broadening in the chi dimension (χ), due to strain-related mosaicity, with increased optical signs of deformation. Measurement of the full width at half maximum along χ (FWHMχ) of these peaks provides a quantitative way to measure strain-related mosaicity in plagioclase feldspar as a proxy for shock level
Shock effects in plagioclase feldspar from the Mistastin Lake impact structure, Canada
Shock metamorphism, caused by hypervelocity impact, is a poorly understood process in feldspar due to the complexity of the crystal structure, the relative ease of weathering, and chemical variations, making optical studies of shocked feldspars challenging. Understanding shock metamorphism in feldspars, and plagioclase in particular, is vital for understanding the history of Earth's moon, Mars, and many other planetary bodies. We present here a comprehensive study of shock effects in andesine and labradorite from the Mistastin Lake impact structure, Labrador, Canada. Samples from a range of different settings were studied, from in situ central uplift materials to clasts from various breccias and impact melt rocks. Evidence of shock metamorphism includes undulose extinction, offset twins, kinked twins, alternate twin deformation, and partial to complete transformation to diaplectic plagioclase glass. In some cases, isotropization of alternating twin lamellae was observed. Planar deformation features (PDFs) are notably absent in the plagioclase, even when present in neighboring quartz grains. It is notable that various microlites, twin planes, and compositionally different lamellae could easily be mistaken for PDFs and so care must be taken. A pseudomorphous zeolite phase (levyne-Ca) was identified as a replacement mineral of diaplectic feldspar glass in some samples, which could, in some instances, also be potentially mistaken for PDFs. We suggest that the lack of PDFs in plagioclase could be due to a combination of structural controls relating to the crystal structure of different feldspars and/or the presence of existing planes of weakness in the form of twin and cleavage planes
Recommended from our members
The Stac Fada “impact ejecta” layer: not what it seems
The Stac Fada Member (SFM) forms part of the Stoer Group of the Torridonian of NW Scotland. The SFM is unique in the Torridonian, being characterized by the presence of greenish altered glass clasts. Its origin has been debated for decades with several hypotheses being proposed but all invoking some connection with volcanic activity in the region. More recently, Amor et al. suggested that the SFM represents “a chord section through the continuous ejecta blanket surrounding an impact crater”. Here, we confirm the presence of shocked material within the SFM and then discuss its origin
Compositional Heterogeneity of Impact Melt Rocks at the Haughton Impact Structure, Canada: Implications for Planetary Processes and Remote Sensing
Connecting the surface expression of impact crater‐related lithologies to planetary or regional subsurface compositions requires an understanding of material transport during crater formation. Here, we use imaging spectroscopy of six clast‐rich impact melt rock outcrops within the well‐preserved 23.5‐Ma, 23‐km diameter Haughton impact structure, Canada, to determine melt rock composition and spatial heterogeneity. We compare results from outcrop to outcrop, using clasts, groundmass, and integrated clast‐groundmass compositions as tracers of transport during crater‐fill melt rock formation and cooling. Supporting laboratory imaging spectroscopy analyses of 91 melt‐bearing breccia and clast samples and microscopic X‐ray fluorescence elemental mapping of cut samples paired with spectroscopy of identical surfaces validate outcrop‐scale lithological determinations. Results show different clast‐rich impact melt rock compositions at three sites kilometers apart and an inverse correlation between silica‐rich (sandstone, gneiss, and phyllosilicate‐rich shales) and gypsum‐rich rocks that suggests differences in source depth with location. In the target stratigraphy, gypsum is primarily sourced from ~1‐km depth, while gneiss is from >1.8‐km depth, sandstone from >1.3 km, and shales from ~1.6–1.7 km. Observed heterogeneities likely result from different excavation depths coupled with rapid quenching of the melt due to high content of cool clasts. Results provide quantitative constraints for numerical models of impact structure formation and give new details on melt rock heterogeneity important in interpreting mission data and planning sample return of impactites, particularly for bodies with impacts into sedimentary and volatile‐bearing targets, e.g., Mars and Ceres
Recommended from our members
An infrared study of modern and paleo-filamentous bacteria from Rio Tinto, Spain
The Rio Tinto River Basin in southwestern Spain is a natural acidic (pH ~2.3) drainage system that supports a diversity of acid tolerant bacteria and eukaryotes with iron and sulfur- oxidizing prokaryotes performing chemolithotrophy and supporting anaerobic respiration [1, 2]. River terrace deposits formed over the past 2 Myr have preserved remnants of this unique biosphere, particularly microbial filaments, which provide templates for iron sulphate and iron oxide precipitation [1, 2]. This process of permineralization causes organic material to become trapped within a mineral matrix and preserved over geological time.
This study analysed cultured filamentous bacteria, modern biofilms and sediments, and river terrace deposits spanning 2.1 Myr to assess the preservation of organics in this extreme environment over time, and the ability to correlate them with a contemporary culture.
Filamentous bacteria are preserved within optically translucent nanophase to crystalline jarosite and goethite within all samples. The cultures contained 1 μm diameter filaments, some partially encrusted with iron oxides with visible cell walls, and others completely free of iron oxides, that are morphologically comparable to those preserved in the Rio Tinto rock record. Organic compounds (e.g. aliphatic hydrocarbons, amides and carboxylic acids) were detected at various levels within the culture and river terraces using mid-IR spectroscopy.
Rio Tinto is a natural laboratory allowing living cells to be studied and correlated to morphological and biomolecular fossils in the geological record. These deposits will provide predictive tools for biomarker studies that may be extended to analogous environments on ancient Earth or even Mars.
[1] Fernández-Remolar et al. (2005) Earth Planet Sci Lett 240,149-167.
[2] Fernández-Remolar & Knoll (2008) Icarus 194,72-85
- …