184 research outputs found

    Dissipative Particle Dynamics with Energy Conservation

    Full text link
    The stochastic differential equations for a model of dissipative particle dynamics with both total energy and total momentum conservation in the particle-particle interactions are presented. The corresponding Fokker-Planck equation for the evolution of the probability distribution for the system is deduced together with the corresponding fluctuation-dissipation theorems ensuring that the ab initio chosen equilibrium probability distribution for the relevant variables is a stationary solution. When energy conservation is included, the system can sustain temperature gradients and heat flow can be modeled.Comment: 7 pages, submitted to Europhys. Let

    Dissipative Particle Dynamics with energy conservation

    Full text link
    Dissipative particle dynamics (DPD) does not conserve energy and this precludes its use in the study of thermal processes in complex fluids. We present here a generalization of DPD that incorporates an internal energy and a temperature variable for each particle. The dissipation induced by the dissipative forces between particles is invested in raising the internal energy of the particles. Thermal conduction occurs by means of (inverse) temperature differences. The model can be viewed as a simplified solver of the fluctuating hydrodynamic equations and opens up the possibility of studying thermal processes in complex fluids with a mesoscopic simulation technique.Comment: 5 page

    A benefit-cost analysis decision framework for mitigation of disease transmission at the wildlife–livestock interface

    Get PDF
    The economics of managing disease transmission at the wildlife–livestock interface have received heightened attention as agricultural and natural resource agencies struggle to tackle growing risks to animal health. In the fiscal landscape of increased scrutiny and shrinking budgets, resource managers seek to maximize the benefits and minimize the costs of disease mitigation efforts. To address this issue, a benefit-cost analysis decision framework was developed to help users make informed choices about whether and how to target disease management efforts in wildlife and livestock populations. Within the context of this framework, we examined the conclusions of a benefit-cost analysis conducted for vampire bat (Desmodus rotundus) rabies control in Mexico. The benefit-cost analysis decision framework provides a method that can be used to identify, assemble, and measure the components vital to the biological and economic efficiency of animal disease mitigation efforts. The framework can be applied to commercially-raised and free-ranging species at various levels of management – from detailed intervention strategies to broad programmatic actions. The ability of benefit cost analysis to illustrate the benefits of disease management projects per dollar spent allows for the determination of economic efficiency of alternative management actions. We believe this framework will be useful to the broader natural resource management community to maximize returns on financial and other resources invested in wildlife and livestock disease management programs

    Drought at a coastal wetland affects refuelling and migration strategies of shorebirds

    Get PDF
    Droughts can affect invertebrate communities in wetlands, which can have bottom-up effects on the condition and survival of top predators. Shorebirds, key predators at coastal wetlands, have experienced widespread population declines and could be negatively affected by droughts. We explored, in detail, the effects of drought on multiple aspects of shorebird stopover and migration ecology by contrasting a year with average wet/dry conditions (2016) with a year with moderate drought (2017) at a major subarctic stopover site on southbound migration. We also examined the effects of drought on shorebird body mass during stopover across 14 years (historical: 1974–1982 and present-day: 2014–2018). For the detailed comparison of two years, in the year with moderate drought we documented lower invertebrate abundance at some sites, higher prey family richness in shorebird faecal samples, lower shorebird refuelling rates, shorter stopover durations for juveniles, and, for most species, a higher probability of making a subsequent stopover in North America after departing the subarctic, compared to the year with average wet/dry conditions. In the 14-year dataset, shorebird body mass tended to be lower in drier years. We show that even short-term, moderate drought conditions can negatively affect shorebird refuelling performance at coastal wetlands, which may carry-over to affect subsequent stopover decisions. Given shorebird population declines and predicted changes in the severity and duration of droughts with climate change, researchers should prioritize a better understanding of how droughts affect shorebird refuelling performance and survival

    Machine Learning Model for Predicting Number of COVID-19 Cases in Countries with Low Number of Tests

    Get PDF
    Background: The COVID-19 pandemic has presented a series of new challenges to governments and healthcare systems. Testing is one important method for monitoring and controlling the spread of COVID-19. Yet with a serious discrepancy in the resources available between rich and poor countries, not every country is able to employ widespread testing. Methods and Objective: Here, we have developed machine learning models for predicting the prevalence of COVID-19 cases in a country based on multilinear regression and neural network models. The models are trained on data from US states and tested against the reported infections in European countries. The model is based on four features: Number of tests, Population Percentage, Urban Population, and Gini index. Results: The population and the number of tests have the strongest correlation with the number of infections. The model was then tested on data from European countries for which the correlation coefficient between the actual and predicted cases R2 was found to be 0.88 in the multi-linear regression and 0.91 for the neural network model Conclusion: The model predicts that the actual prevalence of COVID-19 infection in countries where the number of tests is less than 10% of their populations is at least 26 times greater than the reported numbers

    Comparison of the efficacy of four drug combinations for immobilization of wild pigs

    Get PDF
    Field immobilization of native or invasive wild pigs (Sus scrofa) is challenging. Drug combinations commonly used often result in unsatisfactory immobilization, poor recovery, and adverse side effects, leading to unsafe handling conditions for both animals and humans. We compared four chemical immobilization combinations, medetomidine–midazolam–butorphanol (MMB), butorphanol–azaperone–medetomidine (BAM™), nalbuphine–medetomidine–azaperone (NalMed-A), and tiletamine– zolazepam–xylazine (TZX), to determine which drug combinations might provide better chemical immobilization of wild pigs. We achieved adequate immobilization with no post-recovery morbidity withMMB. Adequate immobilization was achieved with BAM™; however, we observed post-recovery morbidity. Both MMB and BAM™ produced more optimal results relative to body temperature, recovery, and post-recovery morbidity and mortality compared to TZX. Adequate immobilization was not achieved with NalMed-A. Of the four drug combinations examined, we conclude that MMB performed most optimally for immobilization and recovery of wild pigs

    A meta-analysis of oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 discordance between primary breast cancer and metastases

    Get PDF
    BACKGROUND: The discordance in oestrogen receptor (ER), progesterone receptor (PgR) and human epidermal growth factor receptor 2 (HER2) status between primary and recurrent breast cancer is being intensively investigated and a large amount of data have been produced. However, results from different studies are heterogeneous and often conflicting. To highlight this issue, a meta-analysis of published data was performed. METHODS: A literature search was performed using Medline, and all the studies published from 1983 to 2011 comparing changes in ER, PgR and/or HER2 status in patients with matched breast primary and recurrent tumours were included. We used random-effects models to estimate pooled discordance proportions. RESULTS: We selected 48 articles, mostly reporting retrospective studies. Thirty-three, 24 and 31 articles were focused on ER, PgR and HER2 changes, respectively. A total of 4200, 2739 and 2987 tumours were evaluated for ER, PgR and HER2 discordance, respectively. The heterogeneity between study-specific discordance proportions was high for ER (I(2)=91%, p<0.0001), PgR (I(2)=79%, p<0.0001) and HER2 (I(2)=77%, p<0.0001). Pooled discordance proportions were 20% (95% confidence interval (CI): 16-35%) for ER, 33% (95% CI: 29-38%) for PgR and 8% (95% CI: 6-10%) for HER2. Pooled proportions of tumours shifting from positive to negative and from negative to positive were 24% and 14% for ER (p=0.0183), respectively. The same figures were 46% and 15% for PgR (p<0.0001), and 13% and 5% for HER2 (p=0.0004). CONCLUSION: Our findings strengthen the concept that changes in receptor expression may occur during the natural history of breast cancer, suggesting clinical implications and a possible impact on treatment choice

    Everything you always wanted to know about SDPD⋆ (⋆but were afraid to ask)

    Get PDF
    An overview of the smoothed dissipative particle dynamics (SDPD) method is presented in a format that tries to quickly answer questions that often arise among users and newcomers. It is hoped that the status of SDPD is clarified as a mesoscopic particle model and its potentials and limitations are highlighted, as compared with other methods

    When Does an Alien Become a Native Species? A Vulnerable Native Mammal Recognizes and Responds to Its Long-Term Alien Predator

    Get PDF
    The impact of alien predators on native prey populations is often attributed to prey naiveté towards a novel threat. Yet evolutionary theory predicts that alien predators cannot remain eternally novel; prey species must either become extinct or learn and adapt to the new threat. As local enemies lose their naiveté and coexistence becomes possible, an introduced species must eventually become ‘native’. But when exactly does an alien become a native species? The dingo (Canis lupus dingo) was introduced to Australia about 4000 years ago, yet its native status remains disputed. To determine whether a vulnerable native mammal (Perameles nasuta) recognizes the close relative of the dingo, the domestic dog (Canis lupus familiaris), we surveyed local residents to determine levels of bandicoot visitation to yards with and without resident dogs. Bandicoots in this area regularly emerge from bushland to forage in residential yards at night, leaving behind tell-tale deep, conical diggings in lawns and garden beds. These diggings were less likely to appear at all, and appeared less frequently and in smaller quantities in yards with dogs than in yards with either resident cats (Felis catus) or no pets. Most dogs were kept indoors at night, meaning that bandicoots were not simply chased out of the yards or killed before they could leave diggings, but rather they recognized the threat posed by dogs and avoided those yards. Native Australian mammals have had thousands of years experience with wild dingoes, which are very closely related to domestic dogs. Our study suggests that these bandicoots may no longer be naïve towards dogs. We argue that the logical criterion for determining native status of a long-term alien species must be once its native enemies are no longer naïve
    • …
    corecore