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Abstract An overview of the smoothed dissipative particle dynamics (SDPD) method
is presented in a format that tries to quickly answer questions that often arise among
users and newcomers. It is hoped that the status of SDPD is clarified as a mesoscopic
particle model and its potentials and limitations are highlighted, as compared with other
methods.
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1 Introduction

The main purpose of this paper is to provide an overview of the smoothed dissipative particle
dynamics (SDPD) method. The numerical technique was introduced in 2003 by Español and
Revenga[1] to remedy some deficiencies of the classical dissipative particle dynamics (DPD)[2–4].
Since then, it has been applied successfully to a wide range of problems in microfluidics[5],
nanofluidics[6], colloidal suspensions[7–8], blood[9–10], tethered DNA[11], and dilute polymeric
solutions[12–14]. It has also been used for the simulation of fluid mixtures[15–18], mesoscopic
viscoelastic flows[19], and multiscale coupling strategies[18,20–21].

Rather than providing a complete overview on the state-of-the-art applications and chal-
lenges of SDPD (for a very complete recent review of DPD and related formulations, see Ref. [4]),
we will focus here on a didactic overview on both fundamental and technical aspects of the
methodology, which, in our opinion, have generated some misunderstanding in the past years
or have not been fully recognized.
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In order to make the presentation amenable to non-technical users, we propose a format
for the paper in terms of simple questions/answers concerning SDPD. This should help to
clarify some technical issues related to the original motivations behind its early development
and to offer a simple conceptual framework for the computational scientists who would like to
approach this technique for the first time. The answers represent the state-of-the-art in terms of
the physical interpretation of the SDPD methodology as a “mesoscopic approach”, and reflect
the personal opinion of the authors. They are not meant to be definitive but, instead, the
goal here is to stimulate further debate among the community as well as to explore, in more
quantitative terms, the main SDPD advantages and limitations, also in relation to established
methods.

2 What is SDPD?

SDPD is a Lagrangian particle method for the numerical solution of thermal flow problems
able to address both, the macroscale and the mesoscale. Roughly, the mesoscale involves time
scales from 1ns to 106 ns and space scales from 10nm to 104 nm. In SDPD, a set of fluid particles
i = 1, 2, · · · , N are distributed homogeneously over a physical domain and move according to
forces estimated from their local neighborhood. The following set of stochastic differential
equations for the particle positions, velocities, and entropies define the model, and are solved
numerically:





ṙi = vi,

mv̇i = −
∑

j

F C
ij︷ ︸︸ ︷(
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(1)

Instead of the entropy, we may use the internal energy as independent variable, evolving
according to

U̇i =
Pi

d2
i

∑

j

vijW
′
ijeij

︸ ︷︷ ︸
Pi(∇·v)i

− 5η

6

∑

j

W ′
ij

didjrij
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κ∇2Ti

+
∑

j

Q̃ij −
1

2

∑
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F̃ij · vij . (2)

Here, the mass density is calculated by ρi = mi/Vi, where Vi = 1/di is the volume associated
with the particle i, and di =

∑
j

Wij is the number density, where Wij = W (rij , rc) is a kernel
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function with compact support rc, and

W ′
ij =

∂W (r)

∂r

∣∣∣∣
r=rij

.

eij = rij/rij is the unit vector of the joining particles i and j. vij = vi − vj is the particle

velocity difference, and Tij = Ti − Tj is the particle temperature difference. F̃ij and Q̃ij are
random exchanges of momentum and energy per unit time between particles i and j. These
random force and a random heat transfer, respectively, are specified below.

To close the system of equations (1) and (2), any arbitrary equation of state for Pi =
P (ρi, Ti) can be specified. The above dynamic equations have the general equation for non-
equilibrium reversible-irreversible coupling (GENERIC) structure[22]. This implies that they are
thermodynamically consistent, i.e., they respect the first and second laws of thermodynamics,
and the thermal fluctuations lead to the correct thermal fluctuations governed by the Einstein
formula for the equilibrium probability distribution. From the momentum equation, one can
notice that the total force Fi =

∑
j

Fij acting on a particle i is the sum of pairwise contributions

of different nature: (i) a conservative force F C
ij ; (ii) a dissipative force F D

ij ; and (iii) a random

force F R
ij .

To interpret these equations, let us neglect the stochastic contributions in Eq. (2). The result-
ing equations represent a Lagrangian discretization of the non-isothermal Navier-Stokes equa-
tions (NSEs) using the so-called smoothed particle hydrodynamic (SPH) interpolation[23–28].
In a nutshell, the conservative force F C

i =
∑
j

F C
ij is a specific SPH discretization of the pressure

gradient in the NSEs. The dissipative force F D
i =

∑
j

F D
ij is a specific SPH discretization of the

viscous terms in the NSEs, where η is the fluid dynamic viscosity. The last equation represents
the SPH discretization of the entropy equation, where κ is the thermal conductivity, and φi is
the viscous dissipation function calculated on the particle i. In the energy equation (2), the
first term is just the reversible work due to compression of the fluid, while the remaining terms
have the same meaning as those in the entropy equation.

It is worth mentioning that the requirement that the equations should have the GENERIC
structure imposes a very specific structure for F C

i , F D
i , and F R

i . In this way, while the equations
may be understood as a numerical discretization of the NSEs, it is a very special one that
respects at the discrete level the first and second laws and the correct equilibrium distribution.
In fact, even though many different ways of discretizing continuum equations exist, which
converge to the thermodynamic compliant continuum equations, potential problems might arise
in simulations, especially at the mesoscale scale, if the algorithm itself is not thermodynamic
compliant.

The explicit form of the random terms is given in Ref. [1]. Note that an equivalent and
simpler form (with less random number generations) has been given recently[29–30], and reads
as follows:





F̃ij = Aij(x)eijWij(t) + Bij(x)eij × Tij(t),

Q̃ij = Cij(x)Vij(t),
(3)

where

Wij(t) = Wji(t), Tij(t) = Tji(t).
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Vij(t) = −Vji(t) are independent white noises with covariances given by




〈Wii′ (t)Wjj′ (t
′)〉 = (δijδi′j + δij′δji′ ) δ(t − t′),

〈
T α

ii′ (t)T
β
jj′ (t

′)
〉

= (δijδi′j′ + δij′δji′ ) δ(t − t′)δαβ ,

〈Vii′ (t)Vjj′ (t
′)〉 = (δijδi′j′ − δij′δji′ ) δ(t − t′),

(4)

where the averages are over realizations of the Wiener process. Finally, to satisfy the fluctuation-
dissipation theorem (FDT) that guarantees the correct equilibrium distribution, the amplitudes
of the noise in Eq. (3) are given by






Aij =
√

2Bij ,

Bij =

(
4

kBTiTj

Ti + Tj

5η

3

W ′
ij

didjrij

) 1
2

,

Cij =

(
4kBTiTjκ

W ′
ij

didjrij

) 1
2

.

(5)

Note that the random force satisfies Newton’s third law, i.e.,

F̃ij = −F̃ji,

and the heat transfer complies with energy conservation

Q̃ij = −Q̃ji.

The SDPD method represents a proper stochastic extension of the SPH method for the La-
grangian discretization of NSEs, with thermal fluctuations introduced in a thermodynamically
consistent way. SDPD is therefore a stochastic Lagrangian discrete representation of fluctuating

hydrodynamics[31].
In the context of particle methods, another stochastic model aiming at the representation

of fluctuating fluids is the DPD method[32–39]. The SDPD model developed in Ref. [1] was
motivated by some technical drawbacks presented in the original DPD approach which are
discussed in detail below.

3 Why do some scientists have trouble using classical DPD?

Classical DPD is a stochastic particle method, which has a structure very similar to SDPD
with the force acting between particles having soft conservative, dissipative, and random contri-
butions. The functional forms for these forces in classical DPD are, however, somewhat simpler
than in SDPD, and they read






F C
ij = aijω

C(rij)eij ,

F D
ij = γωD(rij)(eij · vij)eij ,

F R
ij = σωR(rij)ξijeij ,

(6)

where aij is the strength of the repulsive potential, γ is a friction coefficient, and σ is the
strength of the thermal noise.

ωC (rij) = max (1 − rij/rc, 0)
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is a weighting function for the conservative force, whereas ωD (rij) and ωR (rij) are two ad-
ditional weighting functions. In order for the noise to satisfy exactly the FDT, the input
parameters need to satisfy σ2 = 2γkBT , and, at the same time, the weight functions need to
be chosen such that

ωD (rij) = (ωR (rij))
2.

No energy or entropy equation is considered in the original DPD model.
This set of equations are manifestly simpler than those for SDPD in Eq. (1). The price

for the simplicity of DPD is, however, that there is no direct connection between the model
parameters and the physical parameters of the liquid system one tries to simulate. In particular,
the following technical drawbacks are presented in the conventional DPD[2,3,40].

Isothermal model The DPD model can be understood as a thermostat, and can only
deal with isothermal situations. Energy transport is precluded in the model.

Transport coefficients The expressions for the DPD transport coefficients, e.g., viscosity,
can be obtained from kinetic theory[40–41]. A common expression considered by DPD users to
“estimate” the fluid viscosity is

νDPD =
45kBT

4πγρr3
c

+
2πγρr5

c

1 575
. (7)

This expression is useful but of limited validity. In fact, it has been specifically derived
from kinetic theory by assuming zero contribution from the conservative forces. It is therefore
accurate in a so-called gas-like regime, where the particles are very weakly interacting with each
other. When the particles interact significantly via the conservative forces, i.e., at high shear
flow, low temperatures or in complex geometries, where compressible effects are more important,
Eq. (7) gives a poor estimate of the viscous behavior of the model DPD fluid. In addition,
recent results show that the measured transport coefficients under viscometric conditions are
also highly sensitive to parametrization, integration method, and thermostating schemes[42].
As a result, it is common among DPD users to map and calibrate the liquid properties under
different choices of input parameters in a way not always systematic and/or unique[43–44].

Equation of state (EOS) for the pressure The EOS is fixed in classical DPD by the
particular form of the conservative forces, and it reads

P (ρ) = ρkBT + αaρ2,

where α ≈ 0.101[40]. This limits the range of the validity of DPD that cannot deal with the
arbitrary thermodynamic behavior of real fluids.

Size of DPD particle It is difficult to specify in advance the scale at which a DPD
simulation operates. In particular, there is no parameter in the model that sets the physical

scale of the particle. This problem is crucial, for instance, in the cases of suspended colloidal
particles or in microfluidics applications where the physical dimensions of the external objects
determine whether and, more importantly, to what extent thermal fluctuations come into play.

In relation to this point, it should be remarked that no formal link between a DPD par-
ticle, understood as a coarse-grained entity, and the underlying atomistic dynamics has been
established so far[4]. The exact application of the Mori-Zwanzig projection formalism for the
construction of coarse-graining (CG) dynamics has been limited so far to systems where the
atoms are bonded together, e.g., membranes and molecules, but cannot be easily extended
to unbonded atomistic systems, e.g., a liquid, where the very definition of CG variables is a
challenging issue.

Resolution in DPD Because there is no specific parameter in DPD associated with the
size of a particle, it is very difficult to check the effect of particle resolution on a given problem
in DPD. To illustrate this point, consider the case of a flow around an obstacle, e.g., a solid
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sphere of physical size R. Ideally, for predictive calculations, one would like to have output
simulation results, e.g., drag, which are independent of the number of particles N used in the
simulation. However, if one changes the resolution in DPD, i.e., moving from rc to rc/2, i.e.,
N → 2DN , where D is the physical dimension, the transport coefficients, e.g., viscosity, will
change in a very complex way (see Eq. (7)), so that one does not have the same fluid anymore.

There have been attempts to address the issue of resolution, i.e., linking the values of the
DPD model parameters with the number of used dissipative particles based on the notion
that a dissipative particle represents Nm atoms packed into it[45]. As a consequence of the
increased effective repulsive forces, it was shown that there had already been disappointingly
low Nm (≈ 10) atoms per DPD particle, which resulted in an artificial crystallization of the
DPD fluid, making an atomistically-motivated choice of the interaction parameters in DPD
useless for practical flow calculations.

The problem has been bypassed in Ref. [46], where it was shown that by assuming a specific
scaling of DPD model parameters with the physical scale, the balance between conservative and
random terms can be restored back to “safe” fluid levels. In that mapping, however, the link
to the atomistic systems (and therefore to the real size of a DPD fluid element) was completely
lost. In fact, it was shown in Ref. [46] that the conventional DPD dynamics could be made
scale-invariant. In addition, as explicitly stated by the authors in the specific scaling proposed
works, it is only for equilibrium phenomena, e.g., static properties and phase diagrams, and not
for dynamic processes, e.g., transport coefficients.

In a nutshell, it is very difficult in classical DPD to assess the sensitivity of the simulation

output to the specific choice of the adopted model parameters and particle resolution. This
feature does not prevent DPD from nicely reproducing different flow behaviors, but it makes it
almost incapable to predict the physical results starting from “a priori incomplete knowledge of

the problem”.
Since the original formulation of DPD, many different models have been devised in order to

ameliorate the problems in the original model. In order to have arbitrary equations of state,
the manybody DPD (MDPD) was introduced in Ref. [47], where the conservative forces were
derived from a free energy function. In order to deal with non-isothermal situations, energy
conserving DPD (EDPD) was introduced by including an internal energy for the dissipative
particles[48–49]. In order to have better representations of the friction forces and angular mo-
mentum conservation, the fluid particle model (FPM) was introduced in Refs. [50] and [51].
SDPD can be regarded as the final outcome of these endeavors, grouping all the partial solu-
tions to the above problems.

4 What is the size of an SDPD particle? Is the SDPD method a mesoscopic
or a macroscopic method?

The physical size of an SDPD particle is determined by the user. The criteria are to use a
sufficiently large number of particles to resolve the physical length scales of the system under
study, in such a way that by increasing further the number of the particles, the results do not
change. In fact, in SPH, as in every other computational fluid dynamics (CFD) numerical grid-
based method solving continuum partial differential equations, e.g., finite difference method,
finite volume method, and finite element method, the control fluid element represents a purely
discrete volume, where mass/momentum conservation is locally enforced and it needs to be
sufficiently small (compared with the geometrical length of the problem) to guarantee the
numerical convergence.

In SDPD, the level of fluctuations associated with every particle is not-scale invariant, and
this is consistent with the fact that the particle represents a physical thermodynamic system
made by a finite (not infinite!) number Nc of constituents (molecules, atoms, etc.). According
to statistical mechanics, the size of fluctuations should scale as ∼ 1/

√
N c, vanishing only in the
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continuum limit, i.e., when the size of the fluid element largely oversizes that of the contained
constituents. Quite remarkably, the thermodynamic consistency of SDPD implies that the
particles are subject to the fluctuations with the correct physical scaling. In fact, velocity
fluctuations are distributed according to a Maxwell-Boltzmann function and their magnitude
scales in such a way that

〈v2
i 〉 =

DkBT

ρ0

1

V i
∼ 1

V i
, (8)

where D is the dimensionality of the problem. Now, because kB, T , and ρ0 are physical
properties specified once for all at the beginning, the velocity fluctuations depend uniquely on
the fluid particle volume Vi. In other words, the size of the SDPD particle uniquely determines
the level of fluctuations.

To illustrate this feature, let us consider the example of a solid sphere with radius R sus-
pended in a liquid. In this case, to get accurate results, we would need to resolve the flow
around the sphere with elements, say, 10 times smaller (for the sake of numerical convergence)
than R. If we have a macroscopic sphere, i.e., R ≈ 1m, then rSDPD

c = 0.1m. This would
give a thermodynamic volume VSDPD ≈ 10−3 m3. On this scale (for water with the density
ρ0 = 1 000kg/m3 at room temperature T = 298K), the fluctuations on the SDPD particles
will be uniquely determined to be 〈v2〉1/2 ≈ 6 × 10−11 m/s. Under common macroscopic flow
problems, this fluctuating contribution (and corresponding random terms in Eq. (1)) can re-
alistically be neglected, and therefore we end up with a deterministic SPH discretization of
NSEs.

However, in the case of a flow around a nanosphere with the radius R = 100nm, rSDPD
c =

10 nm = 10−8 m, and VSDPD ≈ 10−24 m3. As a result, in this case (for the same fluid), 〈v2〉1/2 ≈
2m/s, which is dominant under microfluidics conditions. Fluctuations lead to correct non-zero
diffusional dynamics of the nanosphere.

In summary, whereas the level of thermal fluctuations in DPD is arbitrary (in fact, with
certain prescribed scaling[46], the method is scale-invariant), in SDPD, it is exactly prescribed
by the scale of the problem. In the limit of large systems, thermal noise can be neglected, i.e.,

lim
V→∞

〈v2
i 〉 = 0

(in Eq. (1), we recover the deterministic SPH equations). On the contrary, under mesoscopic
conditions, we have

〈v2
i 〉 6= 0,

the Brownian diffusion is critical, and we need the full stochastic SDPD model. This scale
property is a built-in feature of SDPD, and no tuning is necessary.

Therefore, SDPD can be either a mesoscopic or a macroscopic flow solver, depending on the

specific scale of the problem under study. For macroscopic flows, SDPD is just a particular,
thermodynamically consistent, version of SPH.

5 Is there any link in the SDPD with the underlying atomistic system?

No link has been established so far. Equation (1) is derived irrespectively of the details of the
underlying atomistic fluid, whose identity is kept only through the values of the viscosity and
thermal conductivity and the equations of state. In this sense, the SDPD model is mesoscopic.
However, it is understood as a top-down approach with a clear link to macroscopic continuum
NSEs and correct incorporation of thermal noise. Moreover, there have been claims that DPD is
obtained from the first principles in a bottom-up approach[52–53]. There is, however, a misleading
concept on DPD here, at least with regard to its application to “fluids”. Neither SDPD nor
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DPD has a direct formal link to the underlying microscopic, e.g., atomistic system. In fact, as
discussed in Section 3, there have been no satisfactory derivations of DPD for fluid systems from
the Mori-Zwanzig formalism. The problem is mainly related to the difficulty in the definition
of a coarse-grained particle for a system made by unbonded diffusing atoms, i.e., a liquid. The
best one can do, so far, is to aim at a correct description of the hydrodynamic regime with a
properly introduced thermal noise.

It should be noted, however, that
(i) DPD remains a useful and accurate CG method for systems with bonded atoms, where

the link to the atomistic level has been made[54–55].
(ii) In the case of fluids, DPD remains a simple stochastic method which delivers “hydro-

dynamic behaviors” on larger length-time scales[56] (albeit with the difficulties mentioned in
Section 3).

(iii) In both DPD and SDPD, one cannot attribute the physical meaning to the spatial
processes such as correlations occurring below the SDPD or DPD particle scale rc. How-
ever, it might still be possible to use/tune (unphysical) numerical statistics occurring on small
space-time scales, i.e., smaller than rc, to model different physical processes displaying similar
statistical behaviors. This follows the spirit of the so-called implicit modeling[57], where, for
example, turbulent dissipation models are constructed, which start from the discrete properties
of the chosen numerical scheme rather than a predefined continuum model to be discretized.

6 Does SDPD conserve total energy and linear/angular momentum?

Linear momentum in SDPD is conserved locally and globally. This comes from the fact
that the pairwise forces acting between particles are anti-symmetric by the swapping particle
index, i.e.,

F n
ij = −F n

ji, n = C, D, R. (9)

This is consistent with Newton’s third law that ensures that global momentum is also con-
served, i.e.,

Ṗ =
∑

i

ṗi =
∑

i,j

Fij = 0. (10)

Total energy is conserved in SDPD at the discrete level. This follows directly from the
GENERIC structure of the equations, but one can show directly from Eqs. (1) and (2) that

Ė = K̇ + mU̇ =
d

dt

(
1

2m

∑

i

p2
i + m

∑

i

Ui

)
= 0, (11)

where we use the symmetric properties of the summation
∑
ij

under the index swapping i ↔ j

and the discrete momentum equation (1) to arrive at mU̇ = −K̇.
Angular momentum is not conserved by the original SDPD formulation given in Eq. (1).

This is due to the term proportional to vij in the friction force which introduces tangential
forces between particles. As the SDPD equations are a discretization of NSEs which conserve
angular momentum, angular momentum is conserved in SDPD in the limit of high resolution.

However, lack of conservation at the finite resolution discrete level is a severe problem in some
applications including particle suspensions, and might lead to serious numerical artifact if it is
not exactly enforced[58].

Two routes have been considered to restore angular momentum conservation in SDPD: (I)
to change the viscous force; (II) to introduce an additional spin variable. Let us discuss these
two possibilities separately.
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(I) First of all, recall that SDPD is directly linked to the specific discretizations of the NSEs
which are not unique. Therefore, any specific viscous force representing a possible discretization
of NSEs and consistent with GENERIC is acceptable.

To illustrate this point, let us consider the general structure of the irreversible (viscous) part
of the momentum equations as specified by GENERIC. This reads

mv̇i =
∑

j

(
aijvij +

(aij

3
+ bij

)
eij · vijeij

)
, (12)

where aij and bij are positive interparticle strengths. Now, the classical choice made in the
original SDPD is

bij +
aij

3
= aij = −5η

3

W ′
ij

didjrij
, (13)

which leads to Eq. (1). However, other choices are possible. In fact, if one considers, for example,






aij = 0,

bij = −(D + 2)η

(
1

d2
i

+
1

d2
j

)
W ′

ij

rij
,

(14)

where D is the problem dimensionality, this will lead to the angular momentum preserving
SDPD formulation proposed by Bian et al.[7] and Hu and Adams[59], which is linked to a
particular SPH discretization of the viscous dissipation in the NSEs[60–61]. In fact, with the
choice made in Eq. (14), interparticle forces are uniquely directed along the center-to-center
vector joining two particles, i.e., F D

ij ∝ eij , which automatically ensures the conservation of
angular momentum. The selection of Eq. (14) represents a common SPH representation of the
viscosity term[59–60]. This expression has been mostly used in connection to the SPH/SDPD
simulations of suspended particles[7,62–63].

It should be remarked that, for thermodynamic consistency, GENERIC also requires that
the stochastic terms need to be modified in order to satisfy exactly the FDT with this new choice
of the discrete irreversible particle dynamics. In other words, in SDPD, we have a variety of
options that can be chosen for the interparticle forces, as long as they satisfy the GENERIC
structure in Eq. (12).

(II) A second possibility is represented by the introduction of an additional spin variable
ωi associated with each particle. In Ref. [64], it was shown that by considering an additional
evolution equation for ωi, which can be cast into the GENERIC framework, the overall angular
momentum can be conserved by adopting the original SDPD formulation given in Eq. (1), i.e.,
preserving the term proportional to vij . The deterministic part in this case corresponds to a
SPH discretization of a modified set of NSEs for fluids with spins[65].

In conclusion, in SDPD, the total linear momentum, angular momentum, and energy are

exactly conserved by the specific discrete set of equations. This is a remarkable property of
the method because the specific discretization adopted satisfies the same momentum/energy
conservation as the original continuum PDEs.

7 Does SDPD have an H-theorem?

The GENERIC structure of the SDPD equations automatically ensures that the second law
is satisfied. At a deep level, entropy increase is structurally linked to the fluctuation-dissipation
theorem. Indeed, the covariance of the noise (that gives the amplitude of the noise) is given
by the dissipative matrix, which is, therefore, a positive definite matrix. As emphasized in the
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GENERIC framework, this latter property ensures the entropy increase in the evolution of the
system. The total entropy is the sum of individual particle entropies S =

∑
i

Si. If we neglect

fluctuations and take the time derivative of S, we have

Ṡ =
∑

i

Ṡi =
∑

i

φi

Ti
+ κ

∑

ij

−W ′
ij

didjrijTiTj
T 2

ij > 0, (15)

where the dissipation function is estimated on the particle i and the positivity of −W ′
ij as

follows:

φi = −5η

6

∑

j

W ′
ij

didjrij

(
v2

ij + (eij · vij)
2
)

> 0. (16)

This latter property is a constrain on the shape of the weight function that is satisfied by usual
bell-shaped weight functions.

Therefore, SDPD has an H-theorem valid at the discrete level.

8 How do SDPD results depend on the particle number we choose?

As mentioned in Section 3, in SDPD simulations, the convergence criteria for the numerical
results can be directly assessed. In other words, as in any CFD method, one can fix once
for all the physical quantities characterizing a given problem, e.g., liquid speed of sound cs,
molecular viscosity η, thermal conductivity κ, temperature T , and physical geometry size R,
and can change the number of SDPD particles N and their size rc without having to worry
about varying liquid properties or flow regimes.

It remains to understand what is the level of accuracy in SDPD, i.e., what is the typical
resolution to be used for converged results. As SDPD is a stochastic version of SPH, it is helpful
to resort to its classical error analysis. In SDPD (and SPH), any function f(r) defined over a
domain Ω is represented through a two-step approximation process. In the first instance, as a
result of the smoothing process with the interpolation kernel W , f can be approximated by

f(r) ≈ 〈f(r)〉rc
=

∫

Ω

f(r′)W (|r − r′|, rc)dr′. (17)

The so-called mollification error is the consequence of replacing the exact Dirac δ-function in
an unapproximated convolution with a finite-size kernel W (r).

The second approximation comes from the quadrature of Eq. (17), i.e., by moving from a
continuum space to a discrete space made by a random set of N points, i.e., particles, separated
by a mean distance ∆, and it reads

〈f(r)〉rc
≈ 〈f(r)〉∆rc

=

N∑

j=1

Vjf(rj)W (|r − rj |, rc), (18)

where the usual replacement is done, i.e., dr → Vj , and
∫
→

∑
j=1,··· ,N

, in which Vj is the volume

associated with the particle i introduced in Section 1.
In conclusion, the overall numerical error in SDPD (SPH) is the sum of two terms, i.e.,

‖f(r)− 〈f(r)〉∆rc
‖ = O

((rc

R

)n)
+ O

((
∆

rc

)m)
, (19)

which is a mollification error and a quadrature error[66], where m and n represent the corre-
sponding orders of convergence. In Eq. (19), rc is made dimensionless with a specific problem
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length R. The first term, therefore, tells us how small the particle size must be with respect to
the physical size of the geometry under consideration. The second term quantifies the effect of
the average number of points used for the quadratures, i.e., the local number of neighbors Nneigh

per particle. It can be shown that, if W (r) is a normalized and radially symmetric kernel, the
exponent n = 2. Therefore, in connection with the mollification error, one has the second-order
spatial convergence, which is similar to standard grid-based techniques[67]. It must be noticed,
however, that the presence of the quadrature error introduces a residual which, if not properly
taken into account, prevents the mathematical convergence. In fact, one would ideally require
Nneigh to increase at a rate such that the second term is always smaller than or comparable
to the first one. This might be very impractical to do. It should be noticed instead that the
analytical estimates of the exponent m for irregular particle maps predict a value depending
on the adopted level or regularity of the kernel W [67]. For the classical quintic spline kernel W
(4-times differentiable) normally adopted in SPH/SDPD, we have that m = 3, which means
that the truncation errors go quite rapidly to zero and, in most cases, the regime, where the
residuals are dominant, might not be even accessible. In Ref. [68], for example, it was shown
that for viscous-dominated flow problems, e.g., microflow conditions, by keeping fixed rc/∆, the
resolution-independent results within few percents can be obtained, which is very satisfactory
for practical engineering calculations.

Strictly speaking, the present discussion is valid only for SPH, i.e., SDPD without noise
terms. The truncation errors in SPH are highly dependent on the particle map, being minimal
for a perfect lattice (m = β+2, where β is a property of the kernel W , being the highest integer
such that the βth derivative and all lower derivatives are zero at the edges of the compact
support) and maximal for a completely random particle distribution (m = 0.5). In SPH, the
particles under flow are disordered but not randomly distributed. Therefore, its accuracy is
expected to be between those two limits.

Moreover, it is remarkable that by relaxing the SPH particle map to that one commonly
observed in SDPD, i.e., a liquid-like radial distribution function, a very high-order integration
error exponent (m ≈ 8, when a C6 Wendland kernel is used) can be achieved in SPH, which
is similar to the results obtained only with the particles located on a lattice[69]. In this sense,
thanks to the specific particle distribution enforced in SDPD by the stochastic forces, its ac-
curacy is expected to be even larger than that in SPH where this homogenization mechanism
is absent. This could allow to choose an even smaller number of neighbors Nneigh in SDPD
compared to standard deterministic SPH formulations. More research in the direction of “a bit
of noise increases numerical accuracy in SPH” would be welcome.

9 Is SDPD slower than the classical DPD?

There is a common belief that SDPD is a slower method when compared, e.g., with classical
DPD. This judgment is motivated by two main arguments: (i) a more complex structure of
the equations (i.e., interparticle forces); and (ii) the fact that, in DPD, a small local number
density is typically considered (n = N/V 6 4), leading to an average number of neighbors
Nneigh = 4πn/3 ≈ 17. In contrast, the modus operandi of SDPD requires a higher number of
neighbors, typically on the order of 30 in 2D and 100 in 3D (for a typical choice rc = 3∆, where
∆ is the average interparticle spacing). Let us discuss these two aspects separately.

(i) It is true that the algorithmic complexity of the SDPD equations is somewhat higher
than in DPD. Note that for short-range interacting particle systems, the use of linked-list-cell
routines reduces the total number of pairwise interactions to ∼ O(NNneigh)

[70]. The algorithmic
structure of the neighbors searching procedure is the same in the two methods, and thus the
differences lie ultimately in the force calculation only. The complexity details of each force in
the athermal DPD vs SDPD are listed in Table 1, where we count +, −, ×, and ÷ each as
one floating-point operation and power as three floating-point operations[70]. In relation to the
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random number generator, we assume that, in both methods, one single ξij normally distributes
with zero mean and unit variance counts as, say, k operations.

Table 1 Calculation of the interparticle forces: DPD vs. SDPD

Calculation DPD Count

Do for all interacting particle pairs

Particle properties rij , eij , vij 9

Weighting functions ωD
ij =

“

1 −

rij

rc

”

, ωR
ij = (ωD

ij)
2 3

Conservative force FC
ij = aijmax

“

1 −

rij

rc
, 0

”

eij 4

Dissipative force FD
ij = γωD(rij)(eij · vij)eij 10

Random force FR
ij = σωR(rij)dξijeij 3k + 5

Total force F tot
ij = FC

ij + FD
ij + FR

ij 3

Total operations count 3k + 34

Calculation SDPD Count

Do for all interacting particle pairs

Particle properties rij , eij , vij 9

Weighting functions −W ′(rij) =
“

1 −

rij

rc

”2
3

Conservative force FC
ij = −

“

Pi

d2
i

+
Pj

d2
j

”

W ′

ijeij 5

Dissipative force FD
ij = η

W ′

ij

didjrij
(vij + (eij · vij)eij) 16

Random force FR
ij = Aijdξ̄ij · eij 6k + 22

Total force F tot
ij = FC

ij + FD
ij + FR

ij 3

Total operations count 6k + 58

Note that in SDPD, the density di =
∑
j

Wij can be absorbed in a previous pair loop, and

therefore it does not add any extra complexity. Similarly, in SDPD, all other terms depending
on single particle index i (d2

i , Pi, · · · ) can be pre-estimated in a single particle loop before
entering the pair-loop with negligible extra costs. The maximum load in SDPD comes therefore
from the need to generate a tensorial Wiener process (6 components in 3D due to symmetry
considerations, instead of 3 of DPD) in the random force and from an extra matrix-vector
multiplication. Note that the new implementation[29–30] of the random force in Eq. (3) requires
only four random numbers and the use of uniform random numbers instead of Gaussians further
reduces the cost[29]. In any case, it can be seen that, independently on the used algorithmic
complexity k of the normally deviated random number generator, the overall ratio per time
step between the two methods is less than 2.

(ii) With regard to the average number of neighbors Nneigh, the algorithmic complexity
factor between DPD and SDPD should be on the order of O(NSDPD

neigh /NDPD
neigh) which is typically

on the order of 3 (2D) and 6 (3D).
Note that the request of a large NSDPD

neigh in SDPD is dictated by convergence requirements.

That is, for these large values of NSDPD
neigh , measured local properties (velocity, pressure profiles,

etc.) or integral quantities (drags, flow rates, etc.) do not depend on the adopted resolution.
Unlike DPD, it is precisely that this convergence property of SDPD makes the model predictive,
as the numerical output of the simulation is not particle-number dependent. There is no free
lunch for this property, and the slowing factor of SDPD mentioned above is the price to pay
for it.

On the other hand, we should stress here that this feature represents a “modus operandi”
in SDPD rather than a method drawback. In fact, no one prohibits to use SDPD in a so-called
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“unresolved mode” with NSDPD
neigh ≈ NDPD

neigh. Similar to DPD, some kind of effective coarse-grained
hydrodynamics will emerge but a calibration of the transport coefficients becomes necessary as
in the original DPD model.

In a nutshell, SDPD might be slower than DPD when used in “resolved mode”. That is the

price to pay for having numerical convergence and accurate control on every transport coeffi-

cients. If one is interested in qualitative hydrodynamic aspects, one may relax this requirement,
and similar CPU time is obtained in both methods.

10 How is the fluid complexity incorporated in SDPD?

Applications of mesoscopic methods in microfluidics often require the incorporation of new
complex physics like, for example, non-Newtonian behavior. The standard SDPD equation
(1) describes correctly a fluctuating Newtonian liquid, and thus the question is “how can we
generalize the method to more complex fluids?”. These systems are traditionally modeled in
conventional DPD based on a mechanistic perspective. In fact, new forces (elastic, rigid, etc.)
can be added between particles in order to describe long polymers[71–74], rigid or deformable
particles in suspension[75], porous media[76], droplets[77], cells[78–80], or even more complex
thixotropic materials[81] (see Fig. 1). This can be also viewed as a bottom-up approach where
complexity is fed at the mesoscopic particle level and re-emerges as complex hydrodynamic
behavior on the continuum scale. We denote this approach as mesoscopic viscoelasticity.

This way to simulate complex fluids has several benefits. First of all, it allows to incor-
porate physics based on a physically-grounded force-based approach. Secondly, but not less
important, it allows to bypass the need of constitutive partial differential equations, which, for
some complex fluids/materials, might not be theoretically derivable or of questionable accuracy.
The drawback is that it might not be always easy to tune the mesoscopic physics (interparticle
forces) to deliver a desired (e.g., experimental) target flow behavior on the continuum level.

Fig. 1 Mesoscopic viscoelasticity: colloid (left)[7], polymer (right)[12], where each sphere represents
a single SDPD fluid particle (color online)

Exactly, the same approach can be adopted to simulate suspended structures in SDPD,
albeit with a better prescription of the thermal and physical properties of the solvent medium.
As a matter of fact, SDPD has been successfully applied to model polymer molecules in
suspensions[11–12,14], cells[10,82–85], mesoscopic multiphase flows[86–87], and colloidal or non-
colloidal particles[7,62–63]. We stress that, in SDPD simulations, the output flow behavior of
the bulk systems is not tunable. To illustrate this point, let us consider the rheology of non-
colloidal1 rigid particle suspension studied in Ref. [63]. Output results depend uniquely on the

1The term “non-colloidal” corresponds to a regime of flow (i.e., high Peclet number), where Brownian
motion is irrelevant and a deterministic SPH description of the solvent can be used. This is the typical
case in experiments with 40 µm beads suspended in glycerol mixtures under moderate shear flow[88].
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physical model adopted for the solvent medium (a Newtonian inertia-less fluid in that case) and
not on hidden details of the numerical implementation. As a matter of fact, converged rheolog-
ical results for the suspension viscosity have been achieved in excellent agreement with previous
results obtained by alternative techniques (i.e., Stokesian dynamics)[89] and experiments[88].

The fact that the obtained flow behavior is “numerically converged” and it uniquely relies on
the physical model adopted with no tuning parameters (such as effective particle hydrodynamic
radius, effective rigid-core radius, and effective bulk viscosity/solid volume fraction), precisely
allows the technique to be predictive, as opposite to descriptive, i.e., being able to reproduce

complex fluid rheology. This is one of major advantages in SDPD.
In the case of particle suspension with complex silicon oils (weakly shear-thinning fluids),

it has recently been shown that, by exact parametrization of the rheological properties of the
solvent, simulations can deliver flow behavior for the bulk suspension in quantitative agreement
with experiments without any tuning[90].

In the cases mentioned above, the accurate description of hydrodynamic interactions between
suspended structures allowed for good results against experiments. It should be kept in mind
that, in some cases, the exact nature of the hydrodynamic interaction might not be the essential
aspect to capture. For example, in highly concentrated particle suspensions, short-range friction
forces might be more important, or when modeling some melts, gels, or other thixotropic
materials, the non-hydrodynamic nature of the interactions can be the relevant one. In all
those cases, accuracy of SDPD (as well as of any other hydrodynamic solver) would no longer
be required.

To conclude this section, we highlight the possibility in SDPD to incorporate complexity on
a coarse-grained level, i.e., on scale larger than the suspended polymer molecule. We denote
this alternative approach as coarse-grained viscoelasticity.

In Refs. [19] and [91], a coarse-grained fluid-particle model for a polymer solution was pro-
posed. Instead of linking particles together as discussed above, here every SDPD particle is
considered as a thermodynamic sub-system containing many polymer molecules (see Fig. 2).
The state of the fluid particle is characterized by a configuration tensor c that describes their
average molecular elongation and orientation. The specification of very simple physical mech-
anisms inspired by the dynamics of single polymer molecules allows one, with the help of the
GENERIC formalism, to derive the equations of motion for this set of SDPD particles carrying
polymer molecules in suspension which satisfy strictly thermodynamics consistency, i.e., the
first and second laws of thermodynamics and FDT.

Fig. 2 Coarse-grained viscoelasticity: SDPD modeling of polymer suspension[19,91], where the blue
sphere represents a SDPD particle containing many polymers molecules (color online)
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In a nutshell, if we consider a set of fluid particles labeled by Latin indices i, j = 1, · · · , N ,
in the most general case, the GENERIC-derived stochastic differential equations for the con-
formation tensor associated with each SDPD particle read

ċi =


−

∑

j

1

dj
vij eijW

′
ij




︸ ︷︷ ︸
κi=(∇v)T

i

·ci + ci ·


−

∑

j

1

dj
vij eijW

′
ij




T

︸ ︷︷ ︸
κT

i
=(∇v)i

+
2

λ
di σi · ci +

dc̃i

dt
, (20)

where we have restricted our attention to the isothermal case (for the general non-isothermal
situation, the reader is referred to Ref. [19]). It can be shown that the resulting momentum
equation is the same as Eq. (1), where the isotropic pressure tensor is replaced with a gen-
eral anisotropic viscoelastic tensor taking into account the additional contribution due the
microstructural state of the polymers, i.e., the conformation tensor c, in the form

PiI −→ πi = PiI + 2diσi · ci, (21)

where σi is a tensorial variable thermodynamically conjugated to ci, i.e., σi = T
∂Sp(c)

∂ci
, where

T is a constant temperature and Sp(c) is the conformational-dependent entropy function for
the sub-system depicted in Fig. 2. The first two terms in Eq. (20) take into account flow-
induced stretching effects on the polymer molecules, the third term is an irreversible relaxation
contribution, and the last term is a random contribution connected to the Brownian motion
of the polymer molecules contained in a SDPD particle (see Fig. 2). Here, λ is the longest
relaxation time of the polymer.

Expressions (20) and (21) are of general validity as no assumption has been made yet on
the specific force law of the polymer. Compliance with the GENERIC structure ensures their
thermodynamic consistency at the discrete level.

Polymer physics comes into play in this model with a proper definition of Sp(c). In the
simplest case of a dilute suspension of Hookean dumbbells, this entropy reads[92]

Sp(c) = kB
Np

2
(tr(1 − c) + ln det c) , (22)

where kB is the Boltzmann constant, and Np is the total number of dumbbells per fluid particle.
In Ref. [19], we have shown that this specific choice leads to σi =

(
c−1

i − 1
)

and the resulting
expression for the polymeric stress is

πi = PiI − ηp

λ
(ci − 1) , (23)

where we have defined the polymeric viscosity as ηp = NpdikBTλ. Finally, the last term on the
right-hand side of the evolution equation (20) for ci reduces to

2

λ
diσi · ci =

1

λ
(1− ci) . (24)

The deterministic part of the resulting equations in Eq. (20) can be therefore interpreted as
a very specific SPH discretization of the classical Oldroyd-B constitutive model for a dilute
suspension of Hookean dumbbells. This case is reached in the limit of large SDPD particle size
by virtue of the correct scaling of thermal fluctuations[19]. For small SDPD particles, stochastic
terms become relevant, and Eq. (20) with this specific choice of Sp(c) delivers a stochastic
generalization of the Oldroyd-B model.

It should be borne in mind that, in such a derivation, no reference to the target partial differ-
ential equations (PDEs) (i.e., Oldroyd-B) was considered. The fact that a SPH discretization of
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an Oldroyd-B equation is finally recovered represents a “ posteriori” proof of the consistency of
the approach, as it is the expected result for Hookean dumbbells in suspension. Generalization
to more complex polymeric models, such as finitely extensible nonlinear elastic springs, with
the proper introduction of thermal fluctuations is straightforward. In particular, coarse-grained
thermodynamic consistent models can be constructed by physical specification of conformation-
tensor-dependent entropy of the fluid particles appearing in Eq. (22) rather than by brute force
discretization of existing continuum constitutive equations.

In summary, in SDPD, fluid complexity can be introduced both (i) at the mesoscopic particle-

level (similar to conventional DPD) or (ii) at a supra-particle coarse-grained level. In the

latter case, supplemental coarse-grained variables associated with each particle (in addition to

positions, momenta, energies, and entropies) need to be considered.

11 What is the relation between SDPD and classical CFD methods?

SDPD is a method for the description of fluctuating hydrodynamics characterized by finite
inertia and compressibility. There is a large recent effort to extend classic CFD methods like
finite differences, finite volumes, and finite elements in order to numerically solve the equations
of fluctuating hydrodynamics[93–96]. In common with any other CFD method, SDPD faces
the problem of disparate time scales. In fact, a number of time scales emerge associated with
different processes in a fluid. For example, if we have a small particle of radius R in a fluid
characterized by a speed of sound cs and kinematic viscosity ν, i.e., moving with a typical
velocity V , we may identify the following time scales: the sonic time it takes a sound wave to
cross the particle’s radius ts = R/cs, the vorticity time it takes for vorticity to diffuse across
the particle’s radius tν = R2/ν, the convective time tV it takes for the flow velocity to travel
the particle’s radius tV = R/V , and the diffusive time tD that takes the particle to diffuse
across its own radius tD = R2/D. The ratio of time scales gives rise to the usual dimensionless
numbers, e.g., Mach number Ma = ts/tV = V/c, Reynolds number Re = tν/tV = R2V/ν,
Schmidt number Sc = tD/tν = ν/D, and Peclet number Pe = tV/tD. For a micron sized
particle R = 1 µm in water, these numbers are either very small or very large, reflecting a
huge separation of time scales, e.g., ts ≈ 1 ns, tV ≈ 1 µs, td = R2/D ≈ 1 s, typically leading
to Ma ≪ 1, Re ≪ 1, and Sc ≫ 1. When we have such large/small dimensionless numbers,
the governing equations become stiff. As the numerical time step is dictated by the fastest
process, simulation of the longest time scales requires an impracticable number of time steps.
Two different strategies have been considered in order to address the problem of separation of
time scales in CFD. The first strategy is to consider limiting equations, the second one is to use
telescoped equations.

In the first strategy, one takes rigorous mathematical limits and describes the fluid with a
different set of equations, usually of elliptic character. For example, under microflow condi-
tions, the Reynolds number could be typically on the order of O(10−5 − 10−2) ≪ 1 in such a
way that the inertia-less Stokes approximation (Re = 0) is typically considered when solving
the momentum equation. Moreover, liquids under normal flowing conditions can be considered
as incompressible, i.e., the pressure field adapts instantaneously to a given flowing conditions,
which is equivalent to taking the limit of the speed of sound cs → ∞ and Ma = 0. Finally, in dif-
fusion problems, the Schmidt number Sc in real fluids is typically on the order of O(103−106)2,
and one can take an infinite Schmidt number limit and solve the corresponding equations[97].
The limiting equations overcome the stiffness problem and the need to resolve very fast pro-
cesses, allowing to use much larger time steps and hence much larger time scales. The limiting

2In polymer dynamics, for example, this condition is critical to guarantee that hydrodynamic inter-
actions between monomers of a chain are fully developed on time scale of mass diffusion and to recover
the correct Zimm scaling of polymer relaxation times[12,14].
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equations are, of course, approximations to reality that are computationally convenient.
A different strategy to tackle the problem of separation of time scales is to use telescoped

equations in which the values of the dimensionless numbers, while not complying with realistic
values, still allow for a clear separation of time scales. Typically, ratios of O(10 − 102) are
usually considered between different time scales. For example, one can choose a speed of sound
cs sufficiently large to reduce density fluctuations below few percents but still not realistically
large to affect the efficiency of the time integrator. In the context of mesoscopic techniques,
this strategy has been named telescoping time scales by Padding and Louis[98].

Each strategy to address the problem of separation of time scales in hydrodynamics has its
pros and cons. While the limiting equations admit time steps much larger than the telescoped
equations, the solution of idealized elliptic equations (e.g., Poisson equation) needs sub-step
iterations to get converged solutions within machine precision and therefore increase CPU time
per step compared to explicit time integrators. In addition, elliptic problems are non-local and
notoriously difficult to solve in combination with efficient parallel implementations. Scalability
on massively parallel hardware is an important computational aspect to keep in mind when
solving complex three-dimensional applications where efficient parallelization of the simulation
approach is essential.

As remarked, SDPD is a CFD method to solve the stochastic equations of fluctuating hy-
drodynamics, and the above two strategies have been pursued in SDPD. For example, limiting
equations have been considered by including a constrain on the density (thus changing the
equations) that ensures incompressibility of the fluid[99]. Although this approach was initially
proposed for SPH, it can be straighforwardly applied to the stochastic SDPD. In fact, the La-
grange multipliers used to constrain the density enter uniquely the reversible part of the discrete
dynamics without affecting irreversible/stochastic terms. Other possibilities to enforce incom-
pressibility (zeroing the divergence of the velocity) in SPH include projection methods[60,100].
As the constraint here is on the velocity field itself, if one wants to use projection methods on
SDPD, one needs to ensure that fluctuations obey the FDT, which is not obvious. Both ap-
proaches allow to bypass the Courant-Friedrichs-Levy stability constraint on the speed of sound
(∆t 6 rc/cs). Also, novel splitting-implicit strategies have been introduced in SDPD for the
description of the solvent which bypass the viscous stability time step condition (∆t 6 r2

c/ν),
particularly strict under microflow conditions[13]. In the context of SPH, highly viscous flows
in the Stokes approximation have been recently solved by using conjugate gradient method[101].
As mentioned, all these new approaches involve some kind of non-local effect which shows up
numerically as a number of sub-time steps iterations required. This increases the CPU load per
time step, and might introduce some technical difficulties in efficient parallelizations.

The strategy of telescoped equations has been also considered in SDPD. The weakly com-
pressible SPH method to deal with the small Mach number problem is a popular method[61]

that translates itself into SDPD. The telescoped equation strategy in a particle method leads to
local interactions that are highly suitable for high performance computing (HPC) calculations
where optimal performance up to hundreds of thousands of cores can be easily obtained[102].

We return now to the main question of the heading of this section that we can rephrase in the
form: what are the benefits/drawbacks of particle-based Lagrangian as compared to grid-based
Eulerian methods? In macroscopic flows, SPH has found a clear niche in the treatment of astro-
physical flows where one solves only in the spatial domain where the fluid is or in violent flows
where splashing, sloshing, and fragmentation are naturally described while Eulerian methods
painfully suffer to capture these effects[28]. In the mesoscopic realm, free-surface flow problems
are less common, and these benefits do not seem critical. However, the Lagrangian charac-
ter of a technique can still allow to track interfaces implicitly (i.e., without additional surface
tracking algorithms) which is important for several problems in microfluidics such as dynamics
of emulsions, deformable particles, and biological cells. In addition, when used in combina-
tion with viscoelastic models (the coarse-grained viscoelasticity approach), the microstructural
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state of the liquid does heavily depend on element flow history which is directly available in
Lagrangian methods. Another appealing aspect of a particle method is the possibility to eas-
ily incorporate new physics through additional forces between the particles satisfying default
standard conservation laws, general thermodynamics, and FDT at the discrete level. The use
of the particle paradigm allows to benefit from the large know-how accumulated in molecular
dynamics simulations. On the other hand, in Eulerian grid based methods, it is necessary to
couple the hydrodynamic description of the solvent using a given discrete approach with a dif-
ferent treatment of the solid-liquid interface and fluid-structure-interaction (e.g., by coupling
with molecular-dynamics-like approaches for suspended objects by using immersed boundary,
smooth profile methods, etc.) for which the exact enforcement of thermodynamic consistency
at the discrete level remains a challenge[103].

In conclusion, the different simulation approaches have pros and cons in regard to efficiency
and accuracy which are difficult to assess based on formal discussions. To our knowledge, there
have been no direct comparisons between SDPD and Eulerian methods so far. The value of
each technique should be judged a posteriori by the level of complexity reached by the target
applications, the accuracy in describing them (by systematic comparison with experiments,
whenever possible) and, more importantly, by the ability of each technique in predicting new
physics, possibly quantitatively, in situations when no a priori knowledge of the problem is
available. This is ultimately the “holy grail” of computational science.
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[51] Español, P. Fluid particle model. Physical Review E, 57, 2930–2948 (1998)

[52] Flekkoy, E. G., Coveney, P. V., and de Fabritiis, G. Foundations of dissipative particle dynamics.
Physical Review E, 62, 2140–2157 (2000)

[53] Li, Z., Bian,X., Caswell, B., and Karniadakis, G. E. Construction of dissipative particle dynamics
models for complex fluids via the Mori-Zwanzig formulation. Soft Matter, 10, 8659–8672 (2014)

[54] Kinjo, T. and Hyodo, S. Equation of motion for coarse-grained simulation based on microscopic
description. Physical Review E, 75, 051109 (2007)
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[92] Öttinger, H. C. Complex Fluids, John Wiley Sons, Inc., New York (2005)

[93] Donev§A., Vanden-Eijnden, E., Garcia, A., and Bell, J. On the accuracy of explicit finite-
volume schemes for fluctuating hydrodynamics. Communications in Applied Mathematics and

Computational Science, 5, 149–197 (2010)

[94] Radhakrishnan, R., Uma, B., Liu, J., Ayyaswamy, P. S., and Eckmann, D. M. Temporal mul-
tiscale approach for nanocarrier motion with simultaneous adhesion and hydrodynamic interac-
tions in targeted drug delivery. Journal of Computational Physics, 244, 252–263, (2013)

[95] Donev, A., Fai, T. G., and Vanden-Eijnden, E. A reversible mesoscopic model of diffusion in
liquids: from giant fluctuations to Fick’s law. Journal of Statistical Mechanics: Theory and

Experiment, 2014, P04004 (2013)

[96] Plunkett, P., Hu, J., Siefert, C., and Atzberger, P. J. Spatially adaptive stochastic methods for
fluid-structure interactions subject to thermal fluctuations in domains with complex geometries.
Journal of Computational Physics, 277, 121–137 (2014)

[97] Donev, A. and Vanden-Eijnden, E. Dynamic density functional theory with hydrodynamic in-
teractions and fluctuations. The Journal of Chemical Physics, 140, 234115 (2014)

[98] Padding, J. and Louis, A. Hydrodynamic interactions and Brownian forces in colloidal suspen-
sions: Coarse-graining over time and length scales. Physical Review E, 74, 031402 (2006)

[99] Ellero, M., Serrano, M., Espanol, P., and Español, P. Incompressible smoothed particle hydro-
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