98 research outputs found

    A modern study of HD166734: a massive supergiant system

    Full text link
    Aims. HD166734 is an eccentric eclipsing binary system composed of two supergiant O-type stars, orbiting with a 34.5-day period. In this rare configuration for such stars, the two objects mainly evolve independently, following single-star evolution so far. This system provides a chance to study the individual parameters of two supergiant massive stars and to derive their real masses. Methods. An intensive monitoring was dedicated to HD166734.We analyzed mid- and high-resolution optical spectra to constrain the orbital parameters of this system. We also studied its light curve for the first time, obtained in the VRI filters. Finally, we disentangled the spectra of the two stars and modeled them with the CMFGEN atmosphere code in order to determine the individual physical parameters. Results. HD166734 is a O7.5If+O9I(f) binary. We confirm its orbital period but we revise the other orbital parameters. In comparison to what we found in the literature, the system is more eccentric and, now, the hottest and the most luminous component is also the most massive one. The light curve exhibits only one eclipse and its analysis indicates an inclination of 63.0{\deg} ±\pm 2.7{\deg}. The photometric analysis provides us with a good estimation of the luminosities of the stars, and therefore their exact positions in the Hertzsprung-Russell diagram. The evolutionary and the spectroscopic masses show good agreement with the dynamical masses of 39.5 Msun for the primary and 33.5 Msun for the secondary, within the uncertainties. The two components are both enriched in helium and in nitrogen and depleted in carbon. In addition, the primary also shows a depletion in oxygen. Their surface abundances are however not different from those derived from single supergiant stars, yielding, for both components, an evolution similar to that of single stars.Comment: 13 pages, 13 figures, A&A accepte

    Evidence for a physically bound third component in HD 150136

    Get PDF
    Context. HD150136 is one of the nearest systems harbouring an O3 star. Although this system was for a long time considered as binary, more recent investigations have suggested the possible existence of a third component. Aims. We present a detailed analysis of HD 150136 to confirm the triple nature of this system. In addition, we investigate the physical properties of the individual components of this system. Methods. We analysed high-resolution, high signal-to-noise data collected through multi-epoch runs spread over ten years. We applied a disentangling program to refine the radial velocities and to obtain the individual spectra of each star. With the radial velocities, we computed the orbital solution of the inner system, and we describe the main properties of the orbit of the outer star such as the preliminary mass ratio, the eccentricity, and the orbital-period range. With the individual spectra, we determined the stellar parameters of each star by means of the CMFGEN atmosphere code. Results. We offer clear evidence that HD 150136 is a triple system composed of an O3V((f\ast))-3.5V((f+)), an O5.5-6V((f)), and an O6.5-7V((f)) star. The three stars are between 0-3 Myr old. We derive dynamical masses of about 64, 40, and 35 Msun for the primary, the secondary and the third components by assuming an inclination of 49{\deg}. It currently corresponds to one of the most massive systems in our galaxy. The third star moves with a period in the range of 2950 to 5500 d on an outer orbit with an eccentricity of at least 0.3. This discovery makes HD 150136 the first confirmed triple system with an O3 primary star. However, because of the long orbital period, our dataset is not sufficient to constrain the orbital solution of the tertiary component with high accuracy.Comment: 13 pages, 11 figures, accepted at A&

    APOGEE DR14/DR15 Abundances in the Inner Milky Way

    Full text link
    We present an overview of the distributions of 11 elemental abundances in the Milky Way's inner regions, as traced by APOGEE stars released as part of SDSS Data Release 14/15 (DR14/DR15), including O, Mg, Si, Ca, Cr, Mn, Co, Ni, Na, Al, and K. This sample spans ~4000 stars with R_GC<4 kpc, enabling the most comprehensive study to date of these abundances and their variations within the innermost few kiloparsecs of the Milky Way. We describe the observed abundance patterns ([X/Fe]-[Fe/H]), compare to previous literature results and to patterns in stars at the solar Galactic radius, and discuss possible trends with DR14/DR15 effective temperatures. We find that the position of the [Mg/Fe]-[Fe/H] "knee" is nearly constant with R_GC, indicating a well-mixed star-forming medium or high levels of radial migration in the early inner Galaxy. We quantify the linear correlation between pairs of elements in different subsamples of stars and find that these relationships vary; some abundance correlations are very similar between the alpha-rich and alpha-poor stars, but others differ significantly, suggesting variations in the metallicity dependencies of certain supernova yields. These empirical trends will form the basis for more detailed future explorations and for the refinement of model comparison metrics. That the inner Milky Way abundances appear dominated by a single chemical evolutionary track and that they extend to such high metallicities underscore the unique importance of this part of the Galaxy for constraining the ingredients of chemical evolution modeling and for improving our understanding of the evolution of the Galaxy as a whole.Comment: Submitted to AAS Journals; revised after referee repor

    Revealing the Chemical Structure of the Magellanic Clouds with APOGEE. III. Abundance Gradients of the Small Magellanic Cloud

    Full text link
    We determine radial- and age-abundance gradients of the Small Magellanic Cloud (SMC) using spectra of 2,062 red giant branch (RGB) field stars observed by SDSS-IV / APOGEE-2S. With coverage out to \sim9 kpc in the SMC, these data taken with the high resolution (R22,500R \sim 22,500) APOGEE HH-band spectrograph afford the opportunity to measure extensive radial gradients for as many as 24 abundance ratios. The SMC is found to have an overall metallicity gradient of -0.0546 ±\pm 0.0043 dex/kpc. Ages are calculated for every star to explore the evolution of the different abundance gradients. As a function of age, many of the gradients show a feature 3.66--5.58 Gyr ago, which is especially prominent in the [X/H] gradients. Initially many gradients flatten until about \sim5.58 Gyr ago, but then steepen in more recent times. We previously detected similar evolutionary patterns in the Large Magellanic Cloud (LMC) which are attributed to a recent interaction between the LMC and SMC. It is inferred that the feature in the SMC gradients was caused by the same interaction. The age-[X/Fe] trends, which track average [X/Fe] over time, are flat, demonstrating a slow enrichment history for the SMC. When comparing the SMC gradients to the LMC and MW, normalized to disk scale length (RdR_\text{d}), the [X/Fe] and [X/Mg] gradients are similar, but there is a dichotomy between the dwarfs and the Milky Way (MW) for the [X/H] gradients. The median MW [X/H] gradient around -0.125 dex/RdR_\text{d} whilst the Clouds have gradients of about -0.075 dex/RdR_\text{d}.Comment: 27 pages, 22 figures, and 11 table

    Evidence for a physically bound third component in HD 150136

    Full text link
    Context. HD150136 is one of the nearest systems harbouring an O3 star. Although this system was for a long time considered as binary, more recent investigations have suggested the possible existence of a third component. Aims. We present a detailed analysis of HD 150136 to confirm the triple nature of this system. In addition, we investigate the physical properties of the individual components of this system. Methods. We analysed high-resolution, high signal-to-noise data collected through multi-epoch runs spread over ten years. We applied a disentangling program to refine the radial velocities and to obtain the individual spectra of each star. With the radial velocities, we computed the orbital solution of the inner system, and we describe the main properties of the orbit of the outer star such as the preliminary mass ratio, the eccentricity, and the orbital-period range. With the individual spectra, we determined the stellar parameters of each star by means of the CMFGEN atmosphere code. Results. We offer clear evidence that HD 150136 is a triple system composed of an O3V((f\ast))-3.5V((f+)), an O5.5-6V((f)), and an O6.5-7V((f)) star. The three stars are between 0-3 Myr old. We derive dynamical masses of about 64, 40, and 35 Msun for the primary, the secondary and the third components by assuming an inclination of 49{\deg}. It currently corresponds to one of the most massive systems in our galaxy. The third star moves with a period in the range of 2950 to 5500 d on an outer orbit with an eccentricity of at least 0.3. This discovery makes HD 150136 the first confirmed triple system with an O3 primary star. However, because of the long orbital period, our dataset is not sufficient to constrain the orbital solution of the tertiary component with high accuracy.Comment: 13 pages, 11 figures, accepted at A&

    The APOGEE-2 Survey of the Orion Star Forming Complex: I. Target Selection and Validation with early observations

    Full text link
    The Orion Star Forming Complex (OSFC) is a central target for the APOGEE-2 Young Cluster Survey. Existing membership catalogs span limited portions of the OSFC, reflecting the difficulty of selecting targets homogeneously across this extended, highly structured region. We have used data from wide field photometric surveys to produce a less biased parent sample of young stellar objects (YSOs) with infrared (IR) excesses indicative of warm circumstellar material or photometric variability at optical wavelengths across the full 420 square degrees extent of the OSFC. When restricted to YSO candidates with H < 12.4, to ensure S/N ~100 for a six visit source, this uniformly selected sample includes 1307 IR excess sources selected using criteria vetted by Koenig & Liesawitz and 990 optical variables identified in the Pan-STARRS1 3π\pi survey: 319 sources exhibit both optical variability and evidence of circumstellar disks through IR excess. Objects from this uniformly selected sample received the highest priority for targeting, but required fewer than half of the fibers on each APOGEE-2 plate. We fill the remaining fibers with previously confirmed and new color-magnitude selected candidate OSFC members. Radial velocity measurements from APOGEE-1 and new APOGEE-2 observations taken in the survey's first year indicate that ~90% of the uniformly selected targets have radial velocities consistent with Orion membership.The APOGEE-2 Orion survey will include >1100 bona fide YSOs whose uniform selection function will provide a robust sample for comparative analyses of the stellar populations and properties across all sub-regions of Orion.Comment: Accepted for publication in ApJ

    TOI-150: A transiting hot Jupiter in the TESS southern CVZ

    Full text link
    We report the detection of a hot Jupiter ($M_{p}=1.75_{-0.17}^{+0.14}\ M_{J},, R_{p}=1.38\pm0.04\ R_{J})orbitingamiddleagedstar() orbiting a middle-aged star (\log g=4.152^{+0.030}_{-0.043})intheTransitingExoplanetSurveySatellite(TESS)southerncontinuousviewingzone() in the Transiting Exoplanet Survey Satellite (TESS) southern continuous viewing zone (\beta=-79.59^{\circ}$). We confirm the planetary nature of the candidate TOI-150.01 using radial velocity observations from the APOGEE-2 South spectrograph and the Carnegie Planet Finder Spectrograph, ground-based photometric observations from the robotic Three-hundred MilliMeter Telescope at Las Campanas Observatory, and Gaia distance estimates. Large-scale spectroscopic surveys, such as APOGEE/APOGEE-2, now have sufficient radial velocity precision to directly confirm the signature of giant exoplanets, making such data sets valuable tools in the TESS era. Continual monitoring of TOI-150 by TESS can reveal additional planets and subsequent observations can provide insights into planetary system architectures involving a hot Jupiter around a star about halfway through its main-sequence life.Comment: 13 pages, 3 figures, 2 tables, accepted to ApJ

    Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code - III. omega Cen

    Get PDF
    We study the multiple populations of omega Cen by using the abundances of Fe, C, N, O, Mg, Al, Si, K, Ca, and Ce from the high-resolution, high signal-to-noise (S/N > 70) spectra of 982 red giant stars observed by the SDSS-IV/APOGEE-2 survey. We find that the shape of the Al-Mg and N-C anticorrelations changes as a function of metallicity, continuous for the metal-poor groups, but bimodal (or unimodal) at high metallicities. There are four Fe populations, similarly to previous literature findings, but we find seven populations based on Fe, Al, and Mg abundances. The evolution of Al in omega Cen is compared to its evolution in the Milky Way and in five representative globular clusters. We find that the distribution of Al in metal-rich stars of omega Cen closely follows what is observed in the Galaxy. Other alpha-elements and C, N, O, and Ce are also compared to the Milky Way, and significantly elevated abundances are observed over what is found in the thick disc for almost all elements. However, we also find some stars with high metallicity and low [Al/Fe], suggesting that omega Cen could be the remnant core of a dwarf galaxy, but the existence of these peculiar stars needs an independent confirmation. We also confirm the increase in the sum of CNO as a function of metallicity previously reported in the literature and find that the [C/N] ratio appears to show opposite correlations between Al-poor and Al-rich stars as a function of metallicity
    corecore