3,752 research outputs found
Conductivity of Coulomb interacting massless Dirac particles in graphene: Regularization-dependent parameters and symmetry constraints
We compute the Coulomb correction to the a. c. conductivity of
interacting massless Dirac particles in graphene in the collisionless limit
using the polarization tensor approach in a regularization independent
framework. Arbitrary parameters stemming from differences between
logarithmically divergent integrals are fixed on physical grounds exploiting
only spatial rotational invariance of the model which amounts to
transversality of the polarization tensor. Consequently is
unequivocally determined to be within this effective model. We
compare our result with explicit regularizations and discuss the origin of
others results for found in the literature
Parametric Competition in non-autonomous Hamiltonian Systems
In this work we use the formalism of chord functions (\emph{i.e.}
characteristic functions) to analytically solve quadratic non-autonomous
Hamiltonians coupled to a reservoir composed by an infinity set of oscillators,
with Gaussian initial state. We analytically obtain a solution for the
characteristic function under dissipation, and therefore for the determinant of
the covariance matrix and the von Neumann entropy, where the latter is the
physical quantity of interest. We study in details two examples that are known
to show dynamical squeezing and instability effects: the inverted harmonic
oscillator and an oscillator with time dependent frequency. We show that it
will appear in both cases a clear competition between instability and
dissipation. If the dissipation is small when compared to the instability, the
squeezing generation is dominant and one can see an increasing in the von
Neumann entropy. When the dissipation is large enough, the dynamical squeezing
generation in one of the quadratures is retained, thence the growth in the von
Neumann entropy is contained
Some aspects of mathematical and chemical modeling of complex chemical processes
Some theoretical questions involved in the mathematical modeling of the kinetics of complex chemical process are discussed. The analysis is carried out for the homogeneous oxidation of ethylbenzene in the liquid phase. Particular attention is given to the determination of the general characteristics of chemical systems from an analysis of mathematical models developed on the basis of linear algebra
Tuning the electronic structure of graphene by ion irradiation
Mechanically exfoliated graphene layers deposited on SiO2 substrate were
irradiated with Ar+ ions in order to experimentally study the effect of atomic
scale defects and disorder on the low-energy electronic structure of graphene.
The irradiated samples were investigated by scanning tunneling microscopy and
spectroscopy measurements, which reveal that defect sites, besides acting as
scattering centers for electrons through local modification of the on-site
potential, also induce disorder in the hopping amplitudes. The most important
consequence of the induced disorder is the substantial reduction in the Fermi
velocity, revealed by bias-dependent imaging of electron-density oscillations
observed near defect sites
Small oscillations of a chiral Gross-Neveu system
We study the small oscillations regime (RPA approximation) of the
time-dependent mean-field equations, obtained in a previous work, which
describe the time evolution of one-body dynamical variables of a uniform Chiral
Gross-Neveu system. In this approximation we obtain an analytical solution for
the time evolution of the one-body dynamical variables. The two-fermion physics
can be explored through this solution. The condition for the existence of bound
states is examined.Comment: 21pages, Latex, 1postscript figur
Testing the Elliott-Yafet spin-relaxation mechanism in KC8; a model system of biased graphene
Temperature dependent electron spin resonance (ESR) measurements are reported
on stage 1 potassium doped graphite, a model system of biased graphene. The ESR
linewidth is nearly isotropic and although the g-factor has a sizeable
anisotropy, its majority is shown to arise due to macroscopic magnetization.
Albeit the homogeneous ESR linewidth shows an unusual, non-linear temperature
dependence, it appears to be proportional to the resistivity which is a
quadratic function of the temperature. These observations suggests the validity
of the Elliott-Yafet relaxation mechanism in KC8 and allows to place KC8 on the
empirical Beuneu-Monod plot among ordinary elemental metals.Comment: 6 pages, 4 figures, submitted to Phys. Rev.
- …