4,058 research outputs found

    Gamma Ray Bursts as cosmological tools

    Full text link
    The use of Gamma Ray Bursts as ``standard candles'' has been made possible by the recent discovery of a very tight correlation between their rest frame intrinsic properties. This correlation relates the GRB prompt emission peak spectral energy E_peak to the energy E_gamma corrected for the collimation angle theta_jet of these sources. The possibility to use GRBs to constrain the cosmological parameters and to study the nature of Dark Energy are very promising.Comment: 6 pages, 3 figures, Proceedings of the workshop 'Astrophysical sources of high energy particles and radiation', Torun - Poland 20-24 June 2005, Ed. T. Bulik, B. Rudak, G. Madejsk

    Spectral properties of long and short Gamma-Ray Bursts: comparison between BATSE and Fermi bursts

    Full text link
    We compare the spectral properties of 227 Gamma Ray Bursts (GRBs) detected by the Fermi Gamma Ray Burst Monitor (GBM) up to February 2010 with those of bursts detected by the CGRO/BATSE instrument. Out of 227 Fermi GRBs, 166 have a measured peak energy E_peak_obs of their \nuF(\nu) spectrum: of these 146 and 20 belong the long and short class, respectively. Fermi long bursts follow the correlations defined by BATSE bursts between their E_peak_obs vs fluence and peak flux: as already shown for the latter ones, these correlations and their slopes do not originate from instrumental selection effects. Fermi/GBM bursts extend such correlations toward lower fluence/peak energy values with respect to BATSE ones whereas no GBM long burst with E_peak_obs exceeding a few MeV is found, despite the possibility of detecting them. Again as for BATSE, ∼\sim 5% of long and almost all short GRBs detected by Fermi/GBM are outliers of the E_peak-isotropic equivalent energy ("Amati") correlation while no outlier (neither long nor short) of the E_peak-isotropic equivalent luminosity ("Yonetoku") correlation is found. Fermi long bursts have similar typical values of E_peak_obs but a harder low energy spectral index with respect to all BATSE events, exacerbating the inconsistency with the limiting slopes of the simplest synchrotron emission models. Although the short GRBs detected by Fermi are still only a few, we confirm that their E_peak_obs is greater and the low energy spectrum is harder than those of long ones. We discuss the robustness of these results with respect to observational biases induced by the differences between the GBM and BATSE instruments.Comment: 10 pages, 8 figures, submitted to A&

    Acceleration of cosmic rays and gamma-ray emission from supernova remnant/molecular cloud associations

    Get PDF
    The gamma-ray observations of molecular clouds associated with supernova remnants are considered one of the most promising ways to search for a solution of the problem of cosmic ray origin. Here we briefly review the status of the field, with particular emphasis on the theoretical and phenomenological aspects of the problem.Comment: Invited talk at SUGAR201

    Evidence of two spectral breaks in the prompt emission of gamma ray bursts

    Get PDF
    The long-lasting tension between the observed spectra of gamma ray bursts (GRBs) and the predicted synchrotron emission spectrum might be solved if electrons do not completely cool. Evidence for incomplete cooling was recently found in Swift GRBs with prompt observations down to 0.1 keV and in one bright Fermi burst, GRB 160625B. Here we systematically search for evidence of incomplete cooling in the spectra of the ten brightest short and long GRBs observed by Fermi. We find that in 8/10 long GRBs there is compelling evidence of a low energy break (below the peak energy) and good agreement with the photon indices of the synchrotron spectrum (respectively -2/3 and -3/2 below the break and between the break and the peak energy). Interestingly, none of the ten short GRBs analysed shows a break but the low energy spectral slope is consistent with -2/3. In a standard scenario, these results imply a very low magnetic field in the emission region (B' ~ 10 G in the comoving frame), at odd with expectations.Comment: 14 pages, 15 figures, in press, accepted for publication in A&

    The Epeak-Eiso plane of long Gamma Ray Bursts and selection effects

    Full text link
    We study the distribution of long Gamma Ray Bursts in the Ep-Eiso and in the Ep,obs-Fluence planes through an updated sample of 76 bursts, with measured redshift and spectral parameters, detected up to September 2007. We confirm the existence of a strong rest frame correlation Ep ~ Eiso^0.54+-0.01. Contrary to previous studies, no sign of evolution with redshift of the Ep-Eiso correlation (either its slope and normalisation) is found. The 76 bursts define a strong Ep,obs-Fluence correlation in the observer frame (Ep,obs ~ F^0.32+-0.05) with redshifts evenly distributed along this correlation. We study possible instrumental selection effects in the observer frame Ep,obs-Fluence plane. In particular, we concentrate on the minimum peak flux necessary to trigger a given GRB detector (trigger threshold) and the minimum fluence a burst must have to determine the value of Ep,obs (spectral analysis threshold). We find that the latter dominates in the Ep,obs-Fluence plane over the former. Our analysis shows, however, that these instrumental selection effects do not dominate for bursts detected before the launch of the Swift satellite, while the spectral analysis threshold is the dominant truncation effect of the Swift GRB sample (27 out of 76 events). This suggests that the Ep,obs-Fluence correlation defined by the pre--Swift sample could be affected by other, still not understood, selection effects. Besides we caution about the conclusions on the existence of the Ep,obs-Fluence correlation based on our Swift sample alone.Comment: To appear in MNRA

    Exact ground state Monte Carlo method for Bosons without importance sampling

    Full text link
    Generally ``exact'' Quantum Monte Carlo computations for the ground state of many Bosons make use of importance sampling. The importance sampling is based, either on a guiding function or on an initial variational wave function. Here we investigate the need of importance sampling in the case of Path Integral Ground State (PIGS) Monte Carlo. PIGS is based on a discrete imaginary time evolution of an initial wave function with a non zero overlap with the ground state, that gives rise to a discrete path which is sampled via a Metropolis like algorithm. In principle the exact ground state is reached in the limit of an infinite imaginary time evolution, but actual computations are based on finite time evolutions and the question is whether such computations give unbiased exact results. We have studied bulk liquid and solid 4He with PIGS by considering as initial wave function a constant, i.e. the ground state of an ideal Bose gas. This implies that the evolution toward the ground state is driven only by the imaginary time propagator, i.e. there is no importance sampling. For both the phases we obtain results converging to those obtained by considering the best available variational wave function (the Shadow wave function) as initial wave function. Moreover we obtain the same results even by considering wave functions with the wrong correlations, for instance a wave function of a strongly localized Einstein crystal for the liquid phase. This convergence is true not only for diagonal properties such as the energy, the radial distribution function and the static structure factor, but also for off-diagonal ones, such as the one--body density matrix. From this analysis we conclude that zero temperature PIGS calculations can be as unbiased as those of finite temperature Path Integral Monte Carlo.Comment: 11 pages, 10 figure

    Cosmological constraints with GRBs: homogeneous medium vs wind density profile

    Full text link
    We present the constraints on the cosmological parameters obtained with the EpeakE_{\rm peak}--EγE_{\gamma} correlation found with the most recent sample of 19 GRBs with spectroscopically measured redshift and well determined prompt emission spectral and afterglow parameters. We compare our results obtained in the two possible uniform jet scenarios, i.e. assuming a homogeneous density profile (HM) or a wind density profile (WM) for the circumburst medium. Better constraints on ΩM\Omega_{M} and ΩΛ\Omega_{\Lambda} are obtained with the (tighter) EpeakE_{\rm peak}--EγE_{\gamma} correlation derived in the wind density scenario. We explore the improvements to the constraints of the cosmological parameters that could be reached with a large sample, ∼\sim 150 GRBs, in the future. We study the possibility to calibrate the slope of these correlations. Our optimization analysis suggests that ∼12\sim 12 GRBs with redshift z∈(0.9,1.1)z\in(0.9,1.1) can be used to calibrate the EpeakE_{\rm peak}--EγE_{\gamma} with a precision better than 1%. The same precision is expected for the same number of bursts with z∈(0.45,0.75)z\in(0.45,0.75). This result suggests that we do not necessarily need a large sample of low z GRBs for calibrating the slope of these correlations.Comment: 7 pages, 7 figures, submitted to A&

    The EpE_{\rm p} - EisoE_{\rm iso} relation and the internal shock model

    Get PDF
    The validity of the EpE_{\rm p} - EisoE_{\rm iso} correlation in gamma-ray bursts and the possibility of explaining the prompt emission with internal shocks are highly debated questions. We study whether the EpE_{\rm p} - EisoE_{\rm iso} correlation can be reproduced if internal shocks are indeed responsible for the prompt emission, or conversely, if the correlation can be used to constrain the internal shock scenario. We developed a toy model where internal shocks are limited to the collision of only two shells. Synthetic burst populations were constructed for various distributions of the model parameters, such as the injected power in the relativistic outflow, the average Lorentz factor, and its typical contrast between the shells. These parameters can be independent or linked by various relations. Synthetic EpE_{\rm p} - EisoE_{\rm iso} diagrams are obtained in the different cases and compared with the observed correlation. The reference observed correlation is the one defined by the BAT6 sample, a sample of Swift bursts almost complete in redshift and affected by well-known and reproducible instrumental selection effects. The comparison is then performed with a subsample of synthetic bursts that satisfy the same selection criteria as were imposed on the BAT6 sample. A satisfactory agreement between model and data can often be achieved, but only if several strong constraints are satisfied on both the dynamics of the flow and the microphysics that governs the redistribution of the shock-dissipated energy.Comment: 7 pages, 4 figure

    Afterglows from precursors in Gamma Ray Bursts. Application to the optical afterglow of GRB 091024

    Full text link
    About 15% of Gamma Ray Bursts have precursors, i.e. emission episodes preceding the main event, whose spectral and temporal properties are similar to the main emission. We propose that precursors have their own fireball, producing afterglow emission due to the dissipation of the kinetic energy via external shock. In the time lapse between the precursor and the main event, we assume that the central engine is not completely turned off, but it continues to eject relativistic material at a smaller rate, whose emission is below the background level. The precursor fireball generates a first afterglow by the interaction with the external circumburst medium. Matter injected by the central engine during the "quasi-quiescent" phase replenishes the external medium with material in relativistic motion. The fireball corresponding to the main prompt emission episode crashes with this moving material, producing a second afterglow, and finally catches up and merges with the first precursor fireball. We apply this new model to GRB 091024, an event with a precursor in the prompt light curve and two well defined bumps in the optical afterglow, obtaining an excellent agreement with the existing data.Comment: 11 pages, 6 figures, 3 tables. Accepted for publication in MNRAS, Main Journa
    • …
    corecore