1,582 research outputs found

    The pale evidence for treatment of iron-deficiency anaemia in older people

    Get PDF
    Funding The authors have received funding to carry out a pilot RCT on management of IDA in older people from the Chief Scientist Office, Scotland.Peer reviewedPostprin

    The influence of early research experience in medical school on the decision to intercalate and future career in clinical academia : A questionnaire study

    Get PDF
    Funding for the study was made available from University academic development funds.Peer reviewedPublisher PD

    Hyponatremia : Special Considerations in Older Patients

    Get PDF
    Acknowledgments Roy L. Soiza is funded by an NRS Career Research Fellowship.Peer reviewedPublisher PD

    Discriminant Analysis with Spatial Weights for Urban Land Cover Classification

    Get PDF
    Classifying urban area images is challenging because of the heterogeneous nature of the urban landscape resulting in mixed pixels and classes with highly variable spectral ranges. Approaches using ancillary data, such as knowledge based or expert systems, have shown to improve the classification accuracy in urban areas. Appropriate ancillary data, however, may not always be available. The goal of this study is to compare the results of the discriminant analysis statistical technique with discriminant analysis with spatial weights to classify urban land cover. Discriminant analysis is a statistical technique used to predict group membership for a target based on the linear combination of independent variables. Strict per pixel statistical analysis however does not consider the spatial dependencies among neighbouring pixels. Our study shows that approaches using ancillary data continue to outperform strict spectral classifiers but that using a spatial weight improved the results. Furthermore, results show that when the discriminant analysis technique works well then the spatially weighted approach performs better. However, when the discriminant analysis performs poorly, those poor results are magnified in the spatially weighted approach in the same study area. The study shows that for dominant classes, adding spatial weights improves the classification accuracy.

    The Level of Vision Necessary for Competitive Performance in Rifle Shooting: Setting the Standards for Paralympic Shooting with Vision Impairment

    Get PDF
    The aim of this study was to investigate the level of vision impairment (VI) that would reduce performance in shooting; to guide development of entry criteria to visually impaired (VI) shooting. Nineteen international-level shooters without VI took part in the study. Participants shot an air rifle, while standing, toward a regulation target placed at the end of a 10 m shooting range. Cambridge simulation glasses were used to simulate six different levels of VI. Visual acuity (VA) and contrast sensitivity (CS) were assessed along with shooting performance in each of seven conditions of simulated impairment and compared to that with habitual vision. Shooting performance was evaluated by calculating each individual’s average score in every level of simulated VI and normalizing this score by expressing it as a percentage of the baseline performance achieved with habitual vision. Receiver Operating Characteristic curves were constructed to evaluate the ability of different VA and CS cut-off criteria to appropriately classify these athletes as achieving ‘expected’ or ‘below expected’ shooting results based on their performance with different levels of VA and CS. Shooting performance remained relatively unaffected by mild decreases in VA and CS, but quickly deteriorated with more moderate losses. The ability of visual function measurements to classify shooting performance was good, with 78% of performances appropriately classified using a cut-off of 0.53 logMAR and 74% appropriately classified using a cut-off of 0.83 logCS. The current inclusion criteria for VI shooting (1.0 logMAR) is conservative, maximizing the chance of including only those with an impairment that does impact performance, but potentially excluding some who do have a genuine impairment in the sport. A lower level of impairment would include more athletes who do have a genuine impairment but would potentially include those who do not actually have an impairment that impacts performance in the sport. An impairment to CS could impact performance in the sport and might be considered in determining eligibility to take part in VI competition

    The Genetic Architecture of Noise-Induced Hearing Loss: Evidence for a Gene-by-Environment Interaction.

    Get PDF
    The discovery of environmentally specific genetic effects is crucial to the understanding of complex traits, such as susceptibility to noise-induced hearing loss (NIHL). We describe the first genome-wide association study (GWAS) for NIHL in a large and well-characterized population of inbred mouse strains, known as the Hybrid Mouse Diversity Panel (HMDP). We recorded auditory brainstem response (ABR) thresholds both pre and post 2-hr exposure to 10-kHz octave band noise at 108 dB sound pressure level in 5-6-wk-old female mice from the HMDP (4-5 mice/strain). From the observation that NIHL susceptibility varied among the strains, we performed a GWAS with correction for population structure and mapped a locus on chromosome 6 that was statistically significantly associated with two adjacent frequencies. We then used a "genetical genomics" approach that included the analysis of cochlear eQTLs to identify candidate genes within the GWAS QTL. In order to validate the gene-by-environment interaction, we compared the effects of the postnoise exposure locus with that from the same unexposed strains. The most significant SNP at chromosome 6 (rs37517079) was associated with noise susceptibility, but was not significant at the same frequencies in our unexposed study. These findings demonstrate that the genetic architecture of NIHL is distinct from that of unexposed hearing levels and provide strong evidence for gene-by-environment interactions in NIHL

    Detection of (1,3)-β-d-Glucan in Cerebrospinal Fluid in Histoplasma Meningitis

    Get PDF
    The diagnosis of central nervous system (CNS) histoplasmosis is often difficult. Although cerebrospinal fluid (CSF) (1,3)-β-d-glucan (BDG) is available as a biological marker for the diagnosis of fungal meningitis, there are limited data on its use for the diagnosis of Histoplasma meningitis. We evaluated CSF BDG detection, using the Fungitell assay, in patients with CNS histoplasmosis and controls. A total of 47 cases and 153 controls were identified. The control group included 13 patients with a CNS fungal infection other than histoplasmosis. Forty-nine percent of patients with CNS histoplasmosis and 43.8% of controls were immunocompromised. The median CSF BDG level was 85 pg/ml for cases, compared to <31 pg/ml for all controls (P < 0.05) and 82 pg/ml for controls with other causes of fungal meningitis (P = 0.27). The sensitivity for detection of BDG in CSF was 53.2%, whereas the specificity was 86.9% versus all controls and 46% versus other CNS fungal infections. CSF BDG levels of ≥80 pg/ml are neither sensitive nor specific to support a diagnosis of Histoplasma meningitis

    Light-Front Quantisation as an Initial-Boundary Value Problem

    Full text link
    In the light front quantisation scheme initial conditions are usually provided on a single lightlike hyperplane. This, however, is insufficient to yield a unique solution of the field equations. We investigate under which additional conditions the problem of solving the field equations becomes well posed. The consequences for quantisation are studied within a Hamiltonian formulation by using the method of Faddeev and Jackiw for dealing with first-order Lagrangians. For the prototype field theory of massive scalar fields in 1+1 dimensions, we find that initial conditions for fixed light cone time {\sl and} boundary conditions in the spatial variable are sufficient to yield a consistent commutator algebra. Data on a second lightlike hyperplane are not necessary. Hamiltonian and Euler-Lagrange equations of motion become equivalent; the description of the dynamics remains canonical and simple. In this way we justify the approach of discretised light cone quantisation.Comment: 26 pages (including figure), tex, figure in latex, TPR 93-

    KdV cnoidal waves in a traffic flow model with periodic boundaries

    Get PDF
    An optimal-velocity (OV) model describes car motion on a single lane road. In particular, near to the boundary signifying the onset of traffic jams, this model reduces to a perturbed Korteweg-de Vries (KdV) equation using asymptotic analysis. Previously, the KdV soliton solution has then been found and compared to numerical results (see Muramatsu and Nagatani (1999)). Here, we instead apply modulation theory to this perturbed KdV equation to obtain at leading order, the modulated cnoidal wave solution. At the next order, the Whitham equations are derived, which have been modified due to the equation perturbation terms. Next, from this modulation system, a family of spatially periodic cnoidal waves are identified that characterise vehicle headway distance. Then, for this set of solutions, we establish the relationship between the wave speed, the modulation term and the driver sensitivity. This analysis is confirmed with comparisons to numerical solutions of the OV model. As well, the long-time behaviour of these solutions is investigated
    corecore