132 research outputs found

    Photosynthesis, yield and raw material quality of sugarcane injured by multiple pests

    Get PDF
    Understanding sugarcane (Saccharum spp.) response to multiple pest injury, sugarcane borer (Diatraea saccharalis) and spittlebug (Mahanarva fimbriolata), is essential to make better management decisions. Moreover, the consequences of both pests on the sugarcane raw material quality have not yet been studied. A field experiment was performed in São Paulo State, Brazil, where sugarcane plants were exposed to pests individually or in combination. Plots consisted of a 2-m long row of caged sugarcane plants. Photosynthesis was measured once every 3 months (seasonal measurement). Yield and sugar production were assessed. The measured photosynthesis rate was negatively affected by both borer and spittlebug infestations. Photosynthesis reduction was similar on plants infested by both pests as well as by spittlebug individual infestation. Plants under spittlebug infestation resulted in yield losses and represented 17.6% (individual infestation) and 15.5% (multiple infestations). The sucrose content and the sucrose yield per area were reduced when plants were infested by multiple pests or spittlebug

    Nutrient content in aboveground biomass of Brazilian peanut cultivars in conservation tillage on sugarcane straw and pasture area.

    Get PDF
    Fields studies were conducted in 2004/2005 in order to evaluate the effects of tillage on nutrient content in aboveground biomass of two peanut cultivars, cultivated in rotation after mechanical harvested sugarcane and pastures. These trials were carried out in two types of soils; Oxisol and Ultisol, respectively in Ribeir?ao Preto and Mirassol, S?ao Paulo State, Brazil. The experimental design was split-plot with four replications. Tillage treatments (conventional, minimum and no-tillage) were main plots while sub-plots were peanut genotypes IAC-Tatu ST (Valencia market-type, erect growth habit, red seed coat, maturity range around 100 days after planting) and IAC-Caiap´o (Runner market-type, prostate growth habit, pink testa, maturity range more than 135 days). From 15 to 90 days after emergence, samples of leaves and stems were harvested, dried, weighted and ground to determine macro and micronutrient concentration. At 75 days after sowing, the cultivar IAC-Caiap´o showed higher contents of N, P, K, Cu, and Zn while IAC-Tatu presented higher concentrations of Ca, Mg, and S. Zn content was higher in conservation tillage than in conventional, mainly in Oxisoil for both of cultivars

    Bactérias promotoras de crescimento e adubação nitrogenada no crescimento inicial de cana-de-açúcar proveniente de mudas pré-brotadas

    Get PDF
    O objetivo deste trabalho foi avaliar os efeitos da inoculação de bactérias promotoras de crescimento sobre a formação de mudas pré?brotadas de cana?de?açúcar, oriundas de gemas individualizadas, e quantificar o crescimento inicial dessas mudas, em associação à aplicação de nitrogênio, em solo de baixa fertilidade. Foram conduzidos dois experimentos: um em casa de vegetação, com duração de 50 dias, e o outro, em vasos no campo, com duração de 180 dias. Em ambos os experimentos, utilizou-se o delineamento de blocos ao acaso, em arranjo fatorial 2x3, no primeiro experimento ? com ou sem inoculante, e com três quantidades de reserva nas gemas ?, e 2x2x4, no segundo ? com ou sem inoculante, com ou sem nitrogênio, avaliados em quatro épocas: aos 45, 90, 135 e 180 dias. O inoculante produziu efeito na fase inicial de crescimento das mudas pré?brotadas, com aumento na velocidade de brotação e no acúmulo da matéria seca de raízes e da parte aérea, independentemente da quantidade de reserva da gema. No segundo experimento, o inoculante promoveu ganhos no crescimento inicial da parte aérea e do sistema radicular, até os 180 dias após o transplantio, com aumento em altura, perfilhamento, diâmetro do colmo, produção da matéria seca de colmos e de palha e do comprimento radicular, independentemente da aplicação de nitrogênio. O inoculante tem efeito fisiológico positivo sobre o crescimento das plantas

    Infrastructure expansion challenges sustainable development in Papua New Guinea

    Get PDF
    The island of New Guinea hosts the third largest expanse of tropical rainforest on the planet. Papua New Guinea—comprising the eastern half of the island—plans to nearly double its national road network (from 8,700 to 15,000 km) over the next three years, to spur economic growth. We assessed these plans using fine-scale biophysical and environmental data. We identified numerous environmental and socioeconomic risks associated with these projects, including the dissection of 54 critical biodiversity habitats and diminished forest connectivity across large expanses of the island. Key habitats of globally endangered species including Goodfellow's tree-kangaroo (Dendrolagus goodfellowi), Matchie's tree kangaroo (D. matschiei), and several birds of paradise would also be bisected by roads and opened up to logging, hunting, and habitat conversion. Many planned roads would traverse rainforests and carbon-rich peatlands, contradicting Papua New Guinea's international commitments to promote low-carbon development and forest conservation for climate-change mitigation. Planned roads would also create new deforestation hotspots via rapid expansion of logging, mining, and oil-palm plantations. Our study suggests that several planned road segments in steep and high-rainfall terrain would be extremely expensive in terms of construction and maintenance costs. This would create unanticipated economic challenges and public debt. The net environmental, social, and economic risks of several planned projects—such as the Epo-Kikori link, Madang-Baiyer link, Wau-Malalaua link, and some other planned projects in the Western and East Sepik Provinces—could easily outstrip their overall benefits. Such projects should be reconsidered under broader environmental, economic, and social grounds, rather than short-term economic considerations

    Photosynthesis, yield and raw material quality of sugarcane injured by multiple pests

    Get PDF
    Understanding sugarcane (Saccharum spp.) response to multiple pest injury, sugarcane borer (Diatraea saccharalis) and spittlebug (Mahanarva fimbriolata), is essential to make better management decisions. Moreover, the consequences of both pests on the sugarcane raw material quality have not yet been studied. A field experiment was performed in São Paulo State, Brazil, where sugarcane plants were exposed to pests individually or in combination. Plots consisted of a 2-m long row of caged sugarcane plants. Photosynthesis was measured once every 3 months (seasonal measurement). Yield and sugar production were assessed. The measured photosynthesis rate was negatively affected by both borer and spittlebug infestations. Photosynthesis reduction was similar on plants infested by both pests as well as by spittlebug individual infestation. Plants under spittlebug infestation resulted in yield losses and represented 17.6% (individual infestation) and 15.5% (multiple infestations). The sucrose content and the sucrose yield per area were reduced when plants were infested by multiple pests or spittlebug

    MYC Overexpression Induces Prostatic Intraepithelial Neoplasia and Loss of Nkx3.1 in Mouse Luminal Epithelial Cells

    Get PDF
    Lo-MYC and Hi-MYC mice develop prostatic intraepithelial neoplasia (PIN) and prostatic adenocarcinoma as a result of MYC overexpression in the mouse prostate[1]. However, prior studies have not determined precisely when, and in which cell types, MYC is induced. Using immunohistochemistry (IHC) to localize MYC expression in Lo-MYC transgenic mice, we show that morphological and molecular alterations characteristic of high grade PIN arise in luminal epithelial cells as soon as MYC overexpression is detected. These changes include increased nuclear and nucleolar size and large scale chromatin remodeling. Mouse PIN cells retained a columnar architecture and abundant cytoplasm and appeared as either a single layer of neoplastic cells or as pseudo-stratified/multilayered structures with open glandular lumina—features highly analogous to human high grade PIN. Also using IHC, we show that the onset of MYC overexpression and PIN development coincided precisely with decreased expression of the homeodomain transcription factor and tumor suppressor, Nkx3.1. Virtually all normal appearing prostate luminal cells expressed high levels of Nkx3.1, but all cells expressing MYC in PIN lesions showed marked reductions in Nkx3.1, implicating MYC as a key factor that represses Nkx3.1 in PIN lesions. To determine the effects of less pronounced overexpression of MYC we generated a new line of mice expressing MYC in the prostate under the transcriptional control of the mouse Nkx3.1 control region. These “Super-Lo-MYC” mice also developed PIN, albeit a less aggressive form. We also identified a histologically defined intermediate step in the progression of mouse PIN into invasive adenocarcinoma. These lesions are characterized by a loss of cell polarity, multi-layering, and cribriform formation, and by a “paradoxical” increase in Nkx3.1 protein. Similar histopathological changes occurred in Hi-MYC mice, albeit with accelerated kinetics. Our results using IHC provide novel insights that support the contention that MYC overexpression is sufficient to transform prostate luminal epithelial cells into PIN cells in vivo. We also identified a novel histopathologically identifiable intermediate step prior to invasion that should facilitate studies of molecular pathway alterations occurring during early progression of prostatic adenocarcinomas
    corecore