49 research outputs found

    Genotypic resistance testing in HIV by arrayed primer extension

    Get PDF
    The analysis of mutations that are associated with the occurrence of drug resistance is important for monitoring the antiretroviral therapy of patients infected with human immunodeficiency virus (HIV). Here, we describe the establishment and successful application of Arrayed Primer Extension (APEX) for genotypic resistance testing in HIV as a rapid and economical alternative to standard sequencing. The assay is based on an array of oligonucleotide primers that are immobilised via their 5′-ends. Upon hybridisation of template DNA, a primer extension reaction is performed in the presence of the four dideoxynucleotides, each labelled with a distinct fluorophore. The inserted label immediately indicates the sequence at the respective position. Any mutation changes the colour pattern. We designed a microarray for the analysis of 26 and 33 codons in the HIV protease and reverse transcriptase, respectively, which are of special interest with respect to drug resistance. The enormous genome variability of HIV represents a big challenge for genotypic resistance tests, which include a hybridisation step, both in terms of specificity and probe numbers. The use of degenerated oligonucleotides resulted in a significant reduction in the number of primers needed. For validation, DNA of 94 and 48 patients that exhibited resistance to inhibitors of HIV protease and reverse transcriptase, respectively, were analysed. The validation included HIV subtype B, prevalent in industrialised countries, as well as non-subtype B samples that are more common elsewhere

    Viral Kinetics Suggests a Reconciliation of the Disparate Observations of the Modulation of Claudin-1 Expression on Cells Exposed to Hepatitis C Virus

    Get PDF
    The tight junction protein claudin-1 (CLDN1) is necessary for hepatitis C virus (HCV) entry into target cells. Recent studies have made disparate observations of the modulation of the expression of CLDN1 on cells following infection by HCV. In one study, the mean CLDN1 expression on cells exposed to HCV declined, whereas in another study HCV infected cells showed increased CLDN1 expression compared to uninfected cells. Consequently, the role of HCV in modulating CLDN1 expression, and hence the frequency of cellular superinfection, remains unclear. Here, we present a possible reconciliation of these disparate observations. We hypothesized that viral kinetics and not necessarily HCV-induced receptor modulation underlies these disparate observations. To test this hypothesis, we constructed a mathematical model of viral kinetics in vitro that mimicked the above experiments. Model predictions provided good fits to the observed evolution of the distribution of CLDN1 expression on cells following exposure to HCV. Cells with higher CLDN1 expression were preferentially infected and outgrown by cells with lower CLDN1 expression, resulting in a decline of the mean CLDN1 expression with time. At the same time, because the susceptibility of cells to infection increased with CLDN1 expression, infected cells tended to have higher CLDN1 expression on average than uninfected cells. Our study thus presents an explanation of the disparate observations of CLDN1 expression following HCV infection and points to the importance of considering viral kinetics in future studies of receptor expression on cells exposed to HCV

    Primary T-lymphocytes rescue the replication of HIV-1 DIS RNA mutants in part by facilitating reverse transcription

    Get PDF
    The dimerization initiation site (DIS) stem-loop within the HIV-1 RNA genome is vital for the production of infectious virions in T-cell lines but not in primary cells. In comparison to peripheral blood mononuclear cells (PBMCs), which can support the replication of both wild type and HIV-1 DIS RNA mutants, we have found that DIS RNA mutants are up to 100 000-fold less infectious than wild-type HIV-1 in T-cell lines. We have also found that the cell-type-dependent replication of HIV-1 DIS RNA mutants is largely producer cell-dependent, with mutants displaying a greater defect in viral cDNA synthesis when viruses were not derived from PBMCs. While many examples exist of host–pathogen interplays that are mediated via proteins, analogous examples which rely on nucleic acid triggers are limited. Our data provide evidence to illustrate that primary T-lymphocytes rescue, in part, the replication of HIV-1 DIS RNA mutants through mediating the reverse transcription process in a cell-type-dependent manner. Our data also suggest the presence of a host cell factor that acts within the virus producer cells. In addition to providing an example of an RNA-mediated cell-type-dependent block to viral replication, our data also provides evidence which help to resolve the dilemma of how HIV-1 genomes with mismatched DIS sequences can recombine to generate chimeric viral RNA genomes

    CCC meets ICU: Redefining the role of critical care of cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently the majority of cancer patients are considered ineligible for intensive care treatment and oncologists are struggling to get their patients admitted to intensive care units. Critical care and oncology are frequently two separate worlds that communicate rarely and thus do not share novel developments in their fields. However, cancer medicine is rapidly improving and cancer is eventually becoming a chronic disease. Oncology is therefore characterized by a growing number of older and medically unfit patients that receive numerous novel drug classes with unexpected side effects.</p> <p>Discussion</p> <p>All of these changes will generate more medically challenging patients in acute distress that need to be considered for intensive care. An intense exchange between intensivists, oncologists, psychologists and palliative care specialists is warranted to communicate the developments in each field in order to improve triage and patient treatment. Here, we argue that "critical care of cancer patients" needs to be recognized as a medical subspecialty and that there is an urgent need to develop it systematically.</p> <p>Conclusion</p> <p>As prognosis of cancer improves, novel therapeutic concepts are being introduced and more and more older cancer patients receive full treatment the number of acutely ill patients is growing significantly. This development a major challenge to current concepts of intensive care and it needs to be redefined who of these patients should be treated, for how long and how intensively.</p

    The role of recombination in the emergence of a complex and dynamic HIV epidemic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inter-subtype recombinants dominate the HIV epidemics in three geographical regions. To better understand the role of HIV recombinants in shaping the current HIV epidemic, we here present the results of a large-scale subtyping analysis of 9435 HIV-1 sequences that involve subtypes A, B, C, G, F and the epidemiologically important recombinants derived from three continents.</p> <p>Results</p> <p>The circulating recombinant form CRF02_AG, common in West Central Africa, appears to result from recombination events that occurred early in the divergence between subtypes A and G, followed by additional recent recombination events that contribute to the breakpoint pattern defining the current recombinant lineage. This finding also corrects a recent claim that G is a recombinant and a descendant of CRF02, which was suggested to be a pure subtype. The BC and BF recombinants in China and South America, respectively, are derived from recent recombination between contemporary parental lineages. Shared breakpoints in South America BF recombinants indicate that the HIV-1 epidemics in Argentina and Brazil are not independent. Therefore, the contemporary HIV-1 epidemic has recombinant lineages of both ancient and more recent origins.</p> <p>Conclusions</p> <p>Taken together, we show that these recombinant lineages, which are highly prevalent in the current HIV epidemic, are a mixture of ancient and recent recombination. The HIV pandemic is moving towards having increasing complexity and higher prevalence of recombinant forms, sometimes existing as "families" of related forms. We find that the classification of some CRF designations need to be revised as a consequence of (1) an estimated > 5% error in the original subtype assignments deposited in the Los Alamos sequence database; (2) an increasing number of CRFs are defined while they do not readily fit into groupings for molecular epidemiology and vaccine design; and (3) a dynamic HIV epidemic context.</p

    The Role of Recombination for the Coevolutionary Dynamics of HIV and the Immune Response

    Get PDF
    The evolutionary implications of recombination in HIV remain not fully understood. A plausible effect could be an enhancement of immune escape from cytotoxic T lymphocytes (CTLs). In order to test this hypothesis, we constructed a population dynamic model of immune escape in HIV and examined the viral-immune dynamics with and without recombination. Our model shows that recombination (i) increases the genetic diversity of the viral population, (ii) accelerates the emergence of escape mutations with and without compensatory mutations, and (iii) accelerates the acquisition of immune escape mutations in the early stage of viral infection. We see a particularly strong impact of recombination in systems with broad, non-immunodominant CTL responses. Overall, our study argues for the importance of recombination in HIV in allowing the virus to adapt to changing selective pressures as imposed by the immune system and shows that the effect of recombination depends on the immunodominance pattern of effector T cell responses

    Accurately Measuring Recombination between Closely Related HIV-1 Genomes

    Get PDF
    Retroviral recombination is thought to play an important role in the generation of immune escape and multiple drug resistance by shuffling pre-existing mutations in the viral population. Current estimates of HIV-1 recombination rates are derived from measurements within reporter gene sequences or genetically divergent HIV sequences. These measurements do not mimic the recombination occurring in vivo, between closely related genomes. Additionally, the methods used to measure recombination make a variety of assumptions about the underlying process, and often fail to account adequately for issues such as co-infection of cells or the possibility of multiple template switches between recombination sites. We have developed a HIV-1 marker system by making a small number of codon modifications in gag which allow recombination to be measured over various lengths between closely related viral genomes. We have developed statistical tools to measure recombination rates that can compensate for the possibility of multiple template switches. Our results show that when multiple template switches are ignored the error is substantial, particularly when recombination rates are high, or the genomic distance is large. We demonstrate that this system is applicable to other studies to accurately measure the recombination rate and show that recombination does not occur randomly within the HIV genome

    Adaptation of HIV-1 Depends on the Host-Cell Environment

    Get PDF
    Many viruses have the ability to rapidly develop resistance against antiviral drugs and escape from the host immune system. To which extent the host environment affects this adaptive potential of viruses is largely unknown. Here we show that for HIV-1, the host-cell environment is key to the adaptive potential of the virus. We performed a large-scale selection experiment with two HIV-1 strains in two different T-cell lines (MT4 and C8166). Over 110 days of culture, both virus strains adapted rapidly to the MT4 T-cell line. In contrast, when cultured on the C8166 T-cell line, the same strains did not show any increase in fitness. By sequence analyses and infections with viruses expressing either yellow or cyan fluorescent protein, we were able to show that the absence of adaptation was linked to a lower recombination rate in the C8166 T-cell line. Our findings suggest that if we can manipulate the host-cellular factors that mediate viral evolution, we may be able to significantly retard viral adaptability
    corecore