234 research outputs found

    A model for triggering mechanisms of shallow landslides

    Get PDF
    Abstract. Rainfall-induced shallow landslides, also called "soil slips", are becoming ever more frequent all over the world and are receiving a rising interest in consequence of the heavy damage they produce. At the University of Parma, a simplified physically based model has been recently set up for the evaluation of the safety factor of slopes which are potentially at risk of a soil slip. This model, based on the limit equilibrium method applied to an infinite slope, takes into account some simplified hypotheses on the water down-flow and defines a direct correlation between the safety factor of the slope and the rainfall depth. In this paper, this model is explained in detail and is used in a back analysis process to verify its capability to foresee the triggering instant of rainfall-induced shallow landslides for some recent case studies in the Emilia Romagna Apennines (Northern Italy). The results of the analyses and of the model implementation are finally shown

    Comparison between different approaches to modeling shallow landslide susceptibility: a case history in Oltrepo Pavese, Northern Italy

    Get PDF
    Abstract. On the 27 and 28 April 2009, the area of Oltrepo Pavese in northern Italy was affected by a very intense rainfall event that caused a great number of shallow landslides. These instabilities occurred on slopes covered by vineyards or recently formed woodlands and caused damage to many roads and one human loss. Based on aerial photographs taken immediately after the event and field surveys, more than 1600 landslides were detected. After acquiring topographical data, geotechnical properties of the soils and land use, susceptibility analysis on a territorial scale was carried out. In particular, different physically based models were applied to two contiguous sites with the same geological context but different typologies and sizes of shallow landslides. This paper presents the comparison between the ex-post results obtained from the different approaches. On the basis of the observed landslide localizations, the accuracy of the different models was evaluated, and the significant results are highlighted

    A simplified semi-quantitative procedure based on the SLIP model for landslide risk assessment: the case study of Gioiosa Marea (Sicily, Italy)

    Get PDF
    Landslide risk assessment is fundamental in identifying risk areas, where mitigation measures must be introduced. Most of the existing methods are based on susceptibility assessment strongly site-specific and require information often unavailable for damage quantification. This study proposes a simplified methodology, specific for rainfall-induced shallow landslides, that tries to overcome both these limitations. Susceptibility assessed from a physically-based model SLIP (shallow landslides instability prediction) is combined with distance derived indices representing the interference probability with elements at risk in the anthropized environment. The methodology is applied to Gioiosa Marea municipality (Sicily, south Italy), where shallow landslides are often triggered by rainfall causing relevant social and economic damage because of their interference with roads. SLIP parameters are first calibrated to predict the spatial and temporal occurrence of past surveyed phenomena. Susceptibility is then assessed in the whole municipality and validated by comparison with areas affected by slide movements according to the regional databases of historical landslides. It is shown that all the detected areas are covered by points where the SLIP safety factor ranges between 0 and 2. Risk is finally assessed after computation of distances from elements at risk, selected from the land use map. In this case, results are not well validated because of lack of details in the available regional hydrogeological plan, both in terms of extension and information. Further validation of the proposed interference indices is required, e.g., with studies of landslide propagation, which can also allow considerations on the provoked damage

    Is it still current to talk about first ray hypermobility?

    Get PDF
    Since the time of D. Morton in clinical evaluation we talked about the concept of hypermobility as a cause of diseases such as hallux valgus. To date, this concept has been deepened in order to better understand the pathological mechanisms that create deformity, in order to identify the most appropriate prevention and correction procedures. Physics introduced the concept of stiffness, a property that also belongs to the podalic structures. Changing the terminology is difficult, but the knowledge of biomechanics requires the elimination of the term hypermobility because it resultsinconsistent with the physics applied to the foot, in favor of the terms stiffness and compliance. These clarifications make it possible to us to deepen even more specific and timely therapeutic choices, thus reducing the risk of iatrogenic complications which follows interventions on the first ray

    Effects of the pulsed electromagnetic field PST® on human tendon stem cells : A controlled laboratory study

    Get PDF
    Background: Current clinical procedures for rotator cuff tears need to be improved, as a high rate of failure is still observed. Therefore, new approaches have been attempted to stimulate self-regeneration, including biophysical stimulation modalities, such as low-frequency pulsed electromagnetic fields, which are alternative and non-invasive methods that seem to produce satisfying therapeutic effects. While little is known about their mechanism of action, it has been speculated that they may act on resident stem cells. Thus, the purpose of this study was to evaluate the effects of a pulsed electromagnetic field (PST\uae) on human tendon stem cells (hTSCs) in order to elucidate the possible mechanism of the observed therapeutic effects. Methods: hTSCs from the rotator cuff were isolated from tendon biopsies and cultured in vitro. Then, cells were exposed to a 1-h PST\uae treatment and compared to control untreated cells in terms of cell morphology, proliferation, viability, migration, and stem cell marker expression. Results: Exposure of hTSCs to PST\uae did not cause any significant changes in proliferation, viability, migration, and morphology. Instead, while stem cell marker expression significantly decreased in control cells during cell culturing, PST\uae-treated cells did not have a significant reduction of the same markers. Conclusions: While PST\uae did not have significant effects on hTSCs proliferation, the treatment had beneficial effects on stem cell marker expression, as treated cells maintained a higher expression of these markers during culturing. These results support the notion that PST\uae treatment may increase the patient stem cell regenerative potential

    Lipogems product treatment increases the proliferation rate of human tendon stem cells without affecting their stemness and differentiation capability

    Get PDF
    Increasing the success rate of rotator cuff healing remains tremendous challenge. Among many approaches, the possibility of activating resident stem cells in situ, without the need to isolate them from biopsies, could represent valuable therapeutic strategy. Along this line, it has been recently demonstrated that lipoaspirate product, Lipogems, contains and produces growth-factors that may activate resident stem cells. In this study, human tendon stem cells (hTSCs) from the rotator cuff were cocultured in a transwell system with the Lipogems lipoaspirate product and compared to control untreated cells in terms of cell proliferation, morphology, stem cell marker and VEGF expression, and differentiation and migration capabilities. Results showed that the Lipogems product significantly increases the proliferation rate of hTSCs without altering their stemness and differentiation capability. Moreover, treated cells increase the expression of VEGF, which is crucial for the neovascularization of the tissue during the healing process. Overall, this study supports that directly activating hTSCs with the Lipogems lipoaspirate could represent a new practical therapeutic approach. In fact, obtaining a lipoaspirate is easier, safer, and more cost-effective than harvesting cells from tendon or bone marrow biopsies, expanding them in GMP facility and then reinjecting them in the patient

    Paracrine Diffusion of PrPC and Propagation of Prion Infectivity by Plasma Membrane-Derived Microvesicles

    Get PDF
    Cellular prion protein (PrPc) is a physiological constituent of eukaryotic cells. The cellular pathways underlying prions spread from the sites of prions infection/peripheral replication to the central nervous system are still not elucidated. Membrane-derived microvesicles (MVs) are submicron (0.1–1 µm) particles, that are released by cells during plasma membrane shedding processes. They are usually liberated from different cell types, mainly upon activation as well as apoptosis, in this case, one of their hallmarks is the exposure of phosphatidylserine in the outer leaflet of the membrane. MVs are also characterized by the presence of adhesion molecules, MHC I molecules, as well as of membrane antigens typical of their cell of origin. Evidence exists that MVs shedding provide vehicles to transfer molecules among cells, and that MVs are important modulators of cell-to-cell communication. In this study we therefore analyzed the potential role of membrane-derived MVs in the mechanism(s) of PrPC diffusion and prion infectivity transmission. We first identified PrPC in association with the lipid raft components Fyn, flotillin-2, GM1 and GM3 in MVs from plasma of healthy human donors. Similar findings were found in MVs from cell culture supernatants of murine neuronal cells. Furthermore we demonstrated that PrPSc is released from infected murine neuronal cells in association with plasma membrane-derived MVs and that PrPSc-bearing MVs are infectious both in vitro and in vivo. The data suggest that MVs may contribute both to the intercellular mechanism(s) of PrPC diffusion and signaling as well as to the process of prion spread and neuroinvasion

    Epidemiological and clinical features of rotavirus among children younger than 5 years of age hospitalized with acute gastroenteritis in Northern Italy

    Get PDF
    BACKGROUND: Rotavirus is the major cause of acute gastroenteritis and severe dehydrating diarrhea in young children. METHODS: To estimate the proportion of hospital admissions for rotavirus acute gastroenteritis and identify the circulating G and P genotypes among children under five years of age, we conducted a prospective observational study from January to December 2008, recruiting children consecutively admitted to six hospitals in Milan and nearby towns in northern Italy. Typing was done on stool samples by reverse transcriptase polymerase chain reaction amplification. RESULTS: Of the 521 stool samples from children with acute gastroenteritis, 34.9% (95%CI, 30.8 to 39.2%) were rotavirus-positive. Two thirds (67.6%) were under two years of age, and 13.2% were under six months. The predominant G type was G1 (40.7%), followed by G9 (22.5%), G2 (13.2%), G3 (5.5%), G4 (3.8%) and G10 (1.6%). Twenty-one (11.7%) mixed-G infections were identified: G1+G10 (8.8%); G1+G9 (1.6%); and G2+G10 (1.2%). Only P[8] (67.6%) and P[4] (12.6%) types were P genotyped. The predominant single G/P combination was G1P[8] (39.7%), followed by G9P[8] (25.3%), G2P[4] (14.3%), and G3P[8] (4.1%). All G-mixed types combined with P[8]. CONCLUSIONS: These findings show an high prevalence of rotavirus infections among children admitted to hospital for acute gastroenteritis caused by different rotavirus strains circulating in the area studied

    Incunabular Immunological Events in Prion Trafficking

    Get PDF
    While prions probably interact with the innate immune system immediately following infection, little is known about this initial confrontation. Here we investigated incunabular events in lymphotropic and intranodal prion trafficking by following highly enriched, fluorescent prions from infection sites to draining lymph nodes. We detected biphasic lymphotropic transport of prions from the initial entry site upon peripheral prion inoculation. Prions arrived in draining lymph nodes cell autonomously within two hours of intraperitoneal administration. Monocytes and dendritic cells (DCs) required Complement for optimal prion delivery to lymph nodes hours later in a second wave of prion trafficking. B cells constituted the majority of prion-bearing cells in the mediastinal lymph node by six hours, indicating intranodal prion reception from resident DCs or subcapsulary sinus macrophages or directly from follicular conduits. These data reveal novel, cell autonomous prion lymphotropism, and a prominent role for B cells in intranodal prion movement

    Plasmacytoid Dendritic Cells Sequester High Prion Titres at Early Stages of Prion Infection

    Get PDF
    In most transmissible spongiform encephalopathies prions accumulate in the lymphoreticular system (LRS) long before they are detectable in the central nervous system. While a considerable body of evidence showed that B lymphocytes and follicular dendritic cells play a major role in prion colonization of lymphoid organs, the contribution of various other cell types, including antigen-presenting cells, to the accumulation and the spread of prions in the LRS are not well understood. A comprehensive study to compare prion titers of candidate cell types has not been performed to date, mainly due to limitations in the scope of animal bioassays where prohibitively large numbers of mice would be required to obtain sufficiently accurate data. By taking advantage of quantitative in vitro prion determination and magnetic-activated cell sorting, we studied the kinetics of prion accumulation in various splenic cell types at early stages of prion infection. Robust estimates for infectious titers were obtained by statistical modelling using a generalized linear model. Whilst prions were detectable in B and T lymphocytes and in antigen-presenting cells like dendritic cells and macrophages, highest infectious titers were determined in two cell types that have previously not been associated with prion pathogenesis, plasmacytoid dendritic (pDC) and natural killer (NK) cells. At 30 days after infection, NK cells were more than twice, and pDCs about seven-fold, as infectious as lymphocytes respectively. This result was unexpected since, in accordance to previous reports prion protein, an obligate requirement for prion replication, was undetectable in pDCs. This underscores the importance of prion sequestration and dissemination by antigen-presenting cells which are among the first cells of the immune system to encounter pathogens. We furthermore report the first evidence for a release of prions from lymphocytes and DCs of scrapie-infected mice ex vivo, a process that is associated with a release of exosome-like membrane vesicles
    • …
    corecore