194 research outputs found
Comment on 'A first map of tropical Africa's above-ground biomass derived from satellite imagery'
Copyright Institute of Physics © 2011We present a critical evaluation of the above-ground biomass (AGB) map of Africa published in this journal by Baccini et al (2008 Environ. Res. Lett. 3 045011). We first test their map against an independent dataset of 1154 scientific inventory plots from 16 African countries, and find only weak correspondence between our field plots and the AGB value given for the surrounding 1 km pixel by Baccini et al. Separating our field data using a continental landcover classification suggests that the Baccini et al map underestimates the AGB of forests and woodlands, while overestimating the AGB of savannas and grasslands. Secondly, we compare their map to 216 000 × 0.25 ha spaceborne LiDAR footprints. A comparison between Lorey's height (basal-area-weighted average height) derived from the LiDAR data for 1 km pixels containing at least five LiDAR footprints again does not support the hypothesis that the Baccini et al map is accurate, and suggests that it significantly underestimates the AGB of higher AGB areas. We conclude that this is due to the unsuitability of some of the field data used by Baccini et al to create their map, and overfitting in their model, resulting in low accuracies outside the small areas from which their field data are drawn
An Effective Method for InSAR Mapping of Tropical Forest Degradation in Hilly Areas
Current satellite remote sensing methods struggle to detect and map forest degradation, which is a critical issue as it is likely a major and growing source of carbon emissions and biodiveristy loss. TanDEM-X InSAR phase height (hϕ) is a promising variable for measuring forest disturbances, as it is closely related to the mean canopy height, and thus should decrease if canopy trees are removed. However, previous research has focused on relatively flat terrains, despite the fact that much of the world’s remaining tropical forests are found in hilly areas, and this inevitably introduces artifacts in sideways imaging systems. In this paper, we find a relationship between hϕ and aboveground biomass change in four selectively logged plots in a hilly region of central Gabon. We show that minimising multilooking prior to the calculation of hϕ strengthens this relationship, and that degradation estimates across steep slopes in the surrounding region are improved by selecting data from the most appropriate pass directions on a pixel-by-pixel basis. This shows that TanDEM-X InSAR can measure the magnitude of degradation, and that topographic effects can be mitigated if data from multiple SAR viewing geometries are available
Evidence For The Production Of Slow Antiprotonic Hydrogen In Vacuum
We present evidence showing how antiprotonic hydrogen, the quasistable
antiproton-proton (pbar-p) bound system, has been synthesized following the
interaction of antiprotons with the hydrogen molecular ion (H2+) in a nested
Penning trap environment. From a careful analysis of the spatial distributions
of antiproton annihilation events, evidence is presented for antiprotonic
hydrogen production with sub-eV kinetic energies in states around n=70, and
with low angular momenta. The slow antiprotonic hydrogen may be studied using
laser spectroscopic techniques.Comment: 5 pages with 4 figures. Published as Phys. Rev. Letters 97, 153401
(2006), in slightly different for
ATHENA -- First Production of Cold Antihydrogen and Beyond
Atomic systems of antiparticles are the laboratories of choice for tests of
CPT symmetry with antimatter. The ATHENA experiment was the first to report the
production of copious amounts of cold antihydrogen in 2002. This article
reviews some of the insights that have since been gained concerning the
antihydrogen production process as well as the external and internal properties
of the produced anti-atoms. Furthermore, the implications of those results on
future prospects of symmetry tests with antimatter are discussed.Comment: Proc. of the Third Meeting on CPT and Lorentz Symmetry, Bloomington
(Indiana), USA, August 2004, edited by V. A. Kostelecky (World Scientific,
Singapore). 10 pages, 5 figures, 1 table. Author affiliations cor
Cold-Antimatter Physics
The CPT theorem and the Weak Equivalence Principle are foundational
principles on which the standard description of the fundamental interactions is
based. The validity of such basic principles should be tested using the largest
possible sample of physical systems. Cold neutral antimatter (low-energy
antihydrogen atoms) could be a tool for testing the CPT symmetry with high
precision and for a direct measurement of the gravitational acceleration of
antimatter. After several years of experimental efforts, the production of
low-energy antihydrogen through the recombination of antiprotons and positrons
is a well-established experimental reality. An overview of the ATHENA
experiment at CERN will be given and the main experimental results on
antihydrogen formation will be reviewed.Comment: Proceedings of the XLIII International Meeting on Nuclear Physics,
Bormio (Italy), March 13-20 (2005). 10 pages, 4 figures, 1 tabl
On Kinks and Bound States in the Gross-Neveu Model
We investigate static space dependent \sigx=\lag\bar\psi\psi\rag saddle
point configurations in the two dimensional Gross-Neveu model in the large N
limit. We solve the saddle point condition for \sigx explicitly by employing
supersymmetric quantum mechanics and using simple properties of the diagonal
resolvent of one dimensional Schr\"odinger operators rather than inverse
scattering techniques. The resulting solutions in the sector of unbroken
supersymmetry are the Callan-Coleman-Gross-Zee kink configurations. We thus
provide a direct and clean construction of these kinks. In the sector of broken
supersymmetry we derive the DHN saddle point configurations. Our method of
finding such non-trivial static configurations may be applied also in other two
dimensional field theories.Comment: Revised version. A new section added with derivation of the DHN
static configurations in the sector of broken supersymmetry. Some references
added as well. 25 pp, latex, e-mail [email protected]
Laryngeal transplantation in minipigs: vascular, myologic and functional outcomes
There is no effective way of replacing all the functions of the larynx in those requiring laryngectomy. Regenerative medicine offers promise, but cannot presently deliver implants with functioning neuromuscular units. A single well-documented laryngeal transplant in man was a qualified success, but more information is required before clinical trials may be proposed. We studied the early response of the larynx to laryngeal transplantation between 17 pairs of NIH minipigs full matched at the MHC2 locus. Following iterative technical improvements, pigs had good swallowing and a patent airway at 1Â week. No significant changes in mucosal blood flux were observed compared with pre-operative measurements. Changes in muscle morphology and fibre phenotype were observed in transplant muscles retrieved after 7Â days: the levels of fast and slow myosin heavy chain (MyHC) protein were reduced and embryonic MyHC was up regulated consistent with denervation induced atrophy. At 1Â week laryngeal transplantation can result in good swallowing, and is not associated with clinical evidence of ischemia-reperfusion injury in MHC-matched pigs
Reliably Mapping Low-intensity Forest Disturbance Using Satellite Radar Data
In the last decades tropical forests have experienced increased fragmentation due to a global growing demand for agricultural and forest commodities. Satellite remote sensing offers a valuable tool for monitoring forest loss, thanks to the global coverage and the temporal consistency of the acquisitions. In tropical regions, C-band Synthetic Aperture Radar (SAR) data from the Sentinel-1 mission provides cloud-free and open imagery on a 6- or 12-day repeat cycle, offering the unique opportunity to monitor forest disturbances in a timely and continuous manner. Despite recent advances, mapping subtle forest losses, such as those due to small-scale and irregular selective logging, remains problematic. A Cumulative Sum (CuSum) approach has been recently proposed for forest monitoring applications, with preliminary studies showing promising results. Unfortunately, the lack of accurate in-situ measurements of tropical forest loss has prevented a full validation of this approach, especially in the case of low-intensity logging. In this study, we used high-quality field measurements from the tropical Forest Degradation Experiment (FODEX), combining unoccupied aerial vehicle (UAV) LiDAR, Terrestrial Laser Scanning (TLS), and field-inventoried data of forest structural change collected in two logging concessions in Gabon and Peru. The CuSum algorithm was applied to VV-polarized Sentinel-1 ground range detected (GRD) time series to monitor a range of canopy loss events, from individual tree extraction to forest clear cuts. We developed a single change metric using the maximum of the CuSum distribution, retrieving location, time, and magnitude of the disturbance events. A comparison of the CuSum algorithm with the LiDAR reference map resulted in a 78% success rate for the test site in Gabon and 65% success rate for the test site in Peru, for disturbances as small as 0.01 ha in size and for canopy height losses as fine as 10 m. A correlation between the change metric and above ground biomass (AGB) change was found with R2 = 0.95, and R2 = 0.83 for canopy height loss. From the regression model we directly estimated local AGB loss maps for the year 2020, at 1 ha scale and in percentages of AGB loss. Comparison with the Global Forest Watch (GFW) Tree Cover Loss (TCL) product showed a 61% overlap between the two maps when considering only deforested pixels, with 504 ha of deforestation detected by CuSum vs. 348 ha detected by GFW. Low intensity disturbances captured by the CuSum method were largely undetected by GFW and by the SAR-based Radar for Detecting Deforestation (RADD) Alert System. The results of this study confirm this approach as a simple and reproducible change detection method for monitoring and quantifying fine-scale to high intensity forest disturbances, even in the case of multi-storied and high biomass forests
- …