5,361 research outputs found

    On the scalar nonet in the extended Nambu Jona-Lasinio model

    Full text link
    We discuss the lightest scalar resonances, f0(600)f_0(600), κ(800)\kappa(800), a0(980)a_0(980) and f0(980)f_0(980) in the extended Nambu Jona-Lasinio model. We find that the model parameters can be tuned, but unnaturally, to accommodate for those scalars except the f0(980)f_0(980). We also discuss problems encountered in the K Matrix unitarization approximation by using NcN_c counting technique.Comment: 23 pages 3 eps figures, To appear in Nucl. Phys.

    PLL-less Nonlinear Current-limiting Controller for Single-phase Grid-tied Inverters: Design, Stability Analysis and Operation Under Grid Faults

    Get PDF
    A nonlinear controller for single-phase grid-tied inverters, that can operate under both a normal and a faulty grid with guaranteed closed-loop stability, is proposed. The proposed controller acts independently from the system parameters, does not require a phase-locked loop (PLL) and can achieve the desired real power regulation and unity power factor operation. Based on nonlinear input-to-state stability theory, it is analytically proven that the inverter current always remains below a given value, even during transients, independently from grid variations or faults (short circuit or voltage sag). The desired performance and stability of the closed-loop system are rigorously proven since the controller has a structure that does not require any switches, additional limiters or monitoring devices for its implementation. Therefore, nonlinear stability of a grid-tied inverter with a given current-limiting property is proven for both normal and faulty grid conditions. The effectiveness of the proposed approach is experimentally verified under different operating conditions of the grid

    A Single-Phase Four-Switch Rectifier With Significantly Reduced Capacitance

    Get PDF
    A single-phase four-switch rectifier with considerably reduced capacitance is investigated in this paper. The rectifier consists of one conventional rectification leg and one neutral leg linked with two capacitors that split the dc bus. The ripple energy in the rectifier is diverted into the lower split capacitor so that the voltage across the upper split capacitor, designed to be the dc output voltage, has very small ripples. The voltage across the lower capacitor is designed to have large ripples on purpose so that the total capacitance needed is significantly reduced and highly reliable film capacitors, instead of electrolytic capacitors, can be used. At the same time, the rectification leg is controlled independently from the neutral leg to regulate the input current to achieve unity power factor and also to maintain the dc-bus voltage. Experimental results are presented to validate the performance of the proposed strategy

    Stabilization of a Cascaded DC Converter System via Adding a Virtual Adaptive Parallel Impedance to the Input of the Load Converter

    Get PDF
    Connecting converters in cascade is a basic configuration of dc distributed power systems (DPS). The impedance interaction between individually designed converters may make the cascaded system become unstable. The previous presented stabilization approaches not only need to know the information of the regulated converter, but also have to know the characteristics of the other converters in the system, which are contradictory to the modularization characteristic of dc DPS. This letter proposes an adaptive-input-impedance-regulation (AIIR) method, which connects an adaptive virtual impedance in parallel with the input impedance of the load converter, to stabilize the cascaded system. This virtual impedance can adaptively regulate its characteristic for different source converters. Therefore, with the AIIR method, all the load converters can be designed to a fixed standard module to stably adapt various source converters. In addition, at any cases, the AIIR approach only changes the load converter's input impedance in a very small frequency range to keep the load converter's original dynamic performance. The requirements on the AIIR method are derived and the control strategies to achieve the AIIR method are proposed. Finally, considering the worst stability problem that often occurs at the system whose source converter is an LC filter, a load converter cascaded with two different LC input filters is fabricated and tested to validate the effectiveness of the proposed AIIR control method

    Self-Synchronized Universal Droop Controller

    Get PDF
    In this paper, a self-synchronization mechanism is embedded into the universal droop controller (UDC), which is applicable to inverters having an impedance angle between −π/2 rad and π/2 rad, to form a self-synchronized UDC (SUDC). Both the voltage loop and the frequency loop of the UDC are modified to facilitate the standalone and grid-connected operation of inverters. Importantly, the dedicated phase-locked-loop that is often needed for grid-connected or parallel-operated converters is removed. The inverter is able to achieve synchronization before and after connection without the need of a dedicated synchronization unit. Since the original structure of the UDC is kept in the SUDC, the properties of the UDC, such as accurate power sharing and tight output voltage regulation, are well maintained. Extensive experimental results are presented to demonstrate the performance of the proposed SUDC for a gridconnected single-phase inverter

    Centrality, system size and energy dependences of charged-particle pseudo-rapidity distribution

    Full text link
    Utilizing the three-fireball picture within the quark combination model, we study systematically the charged particle pseudorapidity distributions in both Au+Au and Cu+Cu collision systems as a function of collision centrality and energy, sNN=\sqrt{s_{NN}}= 19.6, 62.4, 130 and 200 GeV, in full pseudorapidity range. We find that: (i)the contribution from leading particles to dNch/dηdN_{ch}/d\eta distributions increases with the decrease of the collision centrality and energy respectively; (ii)the number of the leading particles is almost independent of the collision energy, but it does depend on the nucleon participants NpartN_{part}; (iii)if Cu+Cu and Au+Au collisions at the same collision energy are selected to have the same NpartN_{part}, the resulting of charged particle dN/dηdN/d\eta distributions are nearly identical, both in the mid-rapidity particle density and the width of the distribution. This is true for both 62.4 GeV and 200 GeV data. (iv)the limiting fragmentation phenomenon is reproduced. (iiv) we predict the total multiplicity and pseudorapidity distribution for the charged particles in Pb+Pb collisions at sNN=5.5\sqrt{s_{NN}}= 5.5 TeV. Finally, we give a qualitative analysis of the Nch/N_{ch}/ and dNch/dη/∣η≈0dN_{ch}/d\eta/|_{\eta\approx0} as function of sNN\sqrt{s_{NN}} and NpartN_{part} from RHIC to LHC.Comment: 12 pages, 8 figure

    Deconfinement Phase Transition in an Expanding Quark system in Relaxation Time Approximation

    Full text link
    We investigated the effects of nonequilibrium and collision terms on the deconfinement phase transition of an expanding quark system in Friedberg-Lee model in relaxation time approximation. By calculating the effective quark potential, the critical temperature of the phase transition is dominated by the mean field, while the collisions among quarks and mesons change the time structure of the phase transition significantly.Comment: 7 pages, 7 figure

    A convergence and diversity guided leader selection strategy for many-objective particle swarm optimization

    Get PDF
    Recently, particle swarm optimizer (PSO) is extended to solve many-objective optimization problems (MaOPs) and becomes a hot research topic in the field of evolutionary computation. Particularly, the leader particle selection (LPS) and the search direction used in a velocity update strategy are two crucial factors in PSOs. However, the LPS strategies for most existing PSOs are not so efficient in high-dimensional objective space, mainly due to the lack of convergence pressure or loss of diversity. In order to address these two issues and improve the performance of PSO in high-dimensional objective space, this paper proposes a convergence and diversity guided leader selection strategy for PSO, denoted as CDLS, in which different leader particles are adaptively selected for each particle based on its corresponding situation of convergence and diversity. In this way, a good tradeoff between the convergence and diversity can be achieved by CDLS. To verify the effectiveness of CDLS, it is embedded into the PSO search process of three well-known PSOs. Furthermore, a new variant of PSO combining with the CDLS strategy, namely PSO/CDLS, is also presented. The experimental results validate the superiority of our proposed CDLS strategy and the effectiveness of PSO/CDLS, when solving numerous MaOPs with regular and irregular Pareto fronts (PFs)

    The constrained modified KP hierarchy and the generalized Miura transformations

    Full text link
    In this letter, we consider the second Hamiltonian structure of the constrained modified KP hierarchy. After mapping the Lax operator to a pure differential operator the second structure becomes the sum of the second and the third Gelfand-Dickey brackets defined by this differential operator. We simplify this Hamiltonian structure by factorizing the Lax operator into linear terms.Comment: 8 pages, latex, no figure
    • …
    corecore