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A Single-phase Four-Switch Rectifier with
Significantly Reduced Capacitance

Wen-Long Ming, Qing-Chang Zhong,Senior Member, IEEEand Xin Zhang,Member, IEEE

Abstract—A single-phase four-switch rectifier with consider-
ably reduced capacitance is investigated in this paper.Therectifier
consists of one conventional rectification leg and one neutral leg
linked with two capacitors that split the DC bus. The ripple
energy in the rectifier is diverted into the lower split capacitor
so that the voltage across the upper split capacitor, designed to be
the DC output voltage, has very small ripples. The voltage across
the lower capacitor is designed to have large ripples on purpose
so that the total capacitance needed is significantly reduced and
highly reliable film capacitors, instead of electrolytic capacitors,
can be used. At the same time, the rectification leg is controlled
independently from the neutral leg to regulate the input current
to achieve unity power factor and also to maintain the DC-
bus voltage. Experimental results are presented to validate the
performance of the proposed strategy.

Index Terms—Single-phase rectifiers, voltage ripples, electro-
lytic capacitors, neutral leg, reliability, ripple elimin ator.

I. I NTRODUCTION

More and more AC and DC microgrids are now connected
to the public grid and various loads through power converters
[1]. For both AC and DC microgrids, single-phase rectifiers
are often needed when supplying DC loads. Such rectifiers
are expected to have high power density, high efficiency, high
reliability and low costs. There are numerous topologies inthe
literature, aiming to have improved performance from these
three aspects. Moreover, with the integration of renewable
energy sources into the power grid, there is a trend to have
bidirectional single-phase power converter as an interface
between power grid and energy sources [1], [2], [3]. As a
result, the study of single-phase rectifiers has attracted more
and more attention.

Conventionally, bulky electrolytic capacitors are often re-
quired for single-phase rectifiers to produce smooth DC-
bus voltage, due to the pulsating input power. However, the
volume and weight of bulky electrolytic capacitors could be
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a serious problem for volume-critical and/or weight-critical
applications, such as electrical vehicles [4] and aircraftpower
systems [5]. What is worse is that electrolytic capacitors,
known to have limited lifetime, are one of the most vulnerable
components in power electronic systems [6], [7], [8]. As a
result, in order to enhance the reliability of power electronic
systems, it is highly desirable to minimise the usage of
electrolytic capacitors and use highly-reliable small capacitors
like film capacitors if possible, while maintaining low voltage
ripples.

In general, the reduction of electrolytic capacitors can
be achieved in four approaches. One approach is to inject
harmonic currents to suppress fluctuations of input energy
by changing control strategies for existing power switches
in rectifiers. In [9], it was proposed to reduce the DC-bus
capacitor by injecting third harmonic component to the grid
current. This approach benefits from fewer switches and easier
implementation, which lead to lower system costs compared
to other solutions. The second approach is to add an active
energy storage compensator in parallel with DC-bus capacitors
to bypass ripple energy that originally flows into DC-bus
capacitors [5], [10], [11], [12], [13], [14], [15], [16]. This
has been extensively studied in the last few years. Normally,
the added compensator is operated as buck/boost convertersto
inject/absorb ripple currents from DC bus. The third approach
is based on connecting an active compensator in series with the
DC bus [17]. The compensator basically behaves as a voltage
source to offset voltage ripples. Due to the series connection,
the compensator have lower voltage stress compared to parallel
compensators. The last approach is to introduce a ripple port
terminated with a capacitor, as reported in [8], [18], to store the
ripple power. Different from other solutions, an AC capacitor
instead of a DC capacitor is used to handle ripple energy,
which also reduces the voltage stress on the switches.

Following the preliminary conference version of this paper
[19], a 4-switch rectifier is proposed to significantly reduce
the DC-bus capacitance in the widely-adopted asymmetrical
single-phase systems, where the midpoint of the AC side is
not available. The rectifier only uses four switches, which
is similar to a conventional bridge PWM rectifier, but the
switches are formed as a rectification leg and a neutral leg and
operated differently from a conventional full-bridge rectifier.
The rectification leg is operated as a half-bridge rectifier to
regulate the DC-bus voltage via controlling the grid current to
make it clean and in phase with the grid voltage to achieve
unity power factor. The neutral leg, consisting of two active
switches, two split capacitors and one inductor, maintainsa
stable DC output voltage. The control of the two legs are
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independent from each other, which makes control design
very flexible, and the corresponding control strategies can
be designed according to their own objectives. Importantly,
the neutral leg is able to divert the ripple energy from the
upper split (output) capacitor to the lower split capacitor. As a
result, the output voltage does not contain any low frequency
ripples and hence, the upper split capacitor can be significantly
reduced. Note that the voltage across the lower split capacitor
is designed to have relatively large ripples on purpose because
it is not supplied to any loads. Accordingly, the total usageof
DC-bus capacitors could be reduced significantly so that it is
now possible to use highly reliable film capacitors, instead
of bulky electrolytic capacitors. This makes the rectifier very
suitable for high-reliability applications. The selection criteria
of the split capacitors are discussed with the aim to minimise
their usage. This is mainly for systems without hold-up time
requirement. For systems with hold-up requirement, the re-
quired capacitance needs to be large enough if no other means
is applied to provide the energy required; see [17] for detailed
design methods.

The rest of the paper is organised as follows. Section II
introduces the rectifier under investigation. In Section III, how
to significantly reduce DC-bus capacitors is discussed and,in
Section IV, the associated control strategies are developed. In
order to achieve the minimal DC-bus capacitance, the selection
criteria of the split capacitors are then discussed in Section
V and the impact of the different voltages across the split
capacitors are analysed in Section VI. Experimental results
are provided in Section VII and the conclusions are made in
Section IX.

II. T HE SINGLE-PHASE RECTIFIER UNDERINVESTIGATION

The rectifier proposed in the preliminary version of this
paper [19] is investigated further in this paper. It consists of
one rectification leg and one neutral leg, as shown in Figure
1. The rectifier can be formed by adding two active switches
into a conventional half-bridge PWM rectifier by putting a
neutral leg consisting of two switches across the DC bus
with their midpoint connected to the midpoint of the split
capacitors through an inductor. The neutral leg is actuallya
typical DC/DC converter, which has been widely adopted in
industry. In particular, the neutral leg has been applied tothree-
phase four-wire power inverters as reported in [1], [20], [21],
[22]. According to the analysis made in [1], the neutral leg is
a stable system although the inductor is coupled with the split
capacitors.

It is well known that bulky electrolytic capacitors are
often needed for single-phase rectifiers to smooth the second-
order voltage ripples on the DC bus. However, the reliability,
volume and weight of electrolytic capacitors could be a serious
problem for high-reliability, volume-critical and weight-critical
applications [6], [7], [8]. As a result, in order to enhance
the reliability and power density of rectifiers, it is highly
desirable to reduce the usage of capacitors so that highly-
reliable capacitors like film capacitors could be used to replace
electrolytic capacitors. However, for conventional single-phase
rectifiers, there exists a trade-off between reducing required
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Figure 1. The single-phase rectifier under investigation.

capacitors and reducing the output voltage ripples because
single-phase full-bridge rectifiers have only one DC voltage,
which is used as both the DC output and the only ripple energy
buffer on the DC bus. In light of this, a lot of auxiliary circuits
are proposed to construct another DC or AC voltage to store
the voltage ripples, which can be connected in parallel or in
series at the AC or DC sides [5], [8], [13], [23], [24].

For the topology shown in Figure 1, there are two DC
voltages because of the split capacitors. This provides a
possible way to operate the rectifiers to make one of the
voltages as the output voltage to supply loads and to make the
other voltage as the ripple energy buffer. The total capacitance
could be significantly reduced because the ripple energy is
diverted from the output capacitor to the other capacitor, which
could have high voltage ripples. By diverting all the ripple
power to the lower capacitorC−, the output voltageV+ can
become ripple free, which means the output capacitanceC+

can be reduced a lot because it does not need to process any
low frequency ripple energy. Importantly, the capacitorC−

can also be significantly reduced because its voltage is not
supplied to any loads so it can be designed to have large ripples
on purpose. Accordingly, both capacitors can be significantly
reduced and replaced with highly-reliable film capacitors.This
improves the system power density and reliability and reduces
system weight and volume. Although costly film capacitors are
used to replace electrolytic capacitors, the cost arising from
capacitors could still be reduced because the total capacitance
required is considerably reduced.

III. R EDUCTION OF THEBULKY DC-BUS CAPACITORS

In order to clearly show how to significantly reduce the
DC-bus capacitors, there is a need to analyse the relationship
between the ripple energy and the required capacitors for
the investigated rectifier. For this purpose, an average circuit
model is built up at first.

A. Circuit Analysis

It is assumed that the DC-bus voltage of the rectifier is

VDC = V+ + V− (1)

whereV+ andV− are the voltages across the split capacitors
C+ and C− with respect to the neutral pointN and the
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Figure 2. The average circuit model of the single-phase rectifier shown in
Figure 1.

negative point of the DC bus, respectively. Suppose that the
grid current is

ig = Ig sinωt (2)

and the grid voltage is

vg = Vg sinωt (3)

in which Vg and Ig are the peak values of the grid voltage
and current, respectively, andω is the angular line frequency.
Note that the grid voltage and current are supposed to be in
phase in order to achieve unity power factor, andig is a pure
AC current without a DC component.

Because the switches are operated at a frequency much
higher than the fundamental frequency, the averaged variables,
e.g. average currents and average voltages, can be adopted to
well represent the original variables according to the averaging
theory [25] so that the circuit can be analysed by using the
average circuit model [26], [27]. The average circuit model
of the rectification leg can be built following the procedures
developed in [26]. The switchesQ1 andQ2 are replaced with
a current sourceig(1−d2) and a voltage sourceVDC(1−d2),
where d2 is the duty cycle ofQ2, as shown in Figure 2.
Similarly, the average circuit model of the neutral leg can be
obtained as shown in Figure 2, whered3 is the duty cycle of
Switch Q3. Note that, in this paper, the split capacitors are
not necessarily the same, unlike the case in [26], [28], [29],
so the model in this paper is more generic. Also note that in
order to facilitate the exposition in the sequel, the duty cycle
of the lower switch of the rectification leg (Q2) and the duty
cycle of the upper switch of the neutral leg (Q3) are adopted
in the model.

According to the average circuit model of the rectifier shown
in Figure 2, the capacitor currents can be found as

iC+ = ig(1− d2)− IR − iLd3 (4)

iC− = −igd2 + iL(1− d3) (5)

and the neutral currentiL can be found as

iL = iC− − iC+ + ig − IR. (6)

In order to obtain the unity power factor, the two switches
Q1 and Q2 can be operated complementarily to track the

reference of the grid current, which is in phase with the grid
voltage. Since the switching frequency is much higher than the
line frequency, the duty cycle of SwitchQ2 can be calculated
in the average sense as

d2 =
V+

VDC
− Vg

VDC
sinωt (7)

to maintain the DC-bus voltageVDC , according to [26], [29].
Normally, SwitchesQ3 andQ4 are operated complementarily
to split the DC-bus voltageVDC into V+ and V− [1], [21],
[30], [31]. The duty cycle of SwitchQ3 can be calculated as

d3 =
V−

VDC
(8)

because the neutral leg is operated as a DC/DC buck converter.
Because of the power balance between the AC and DC sides
(ignoring the power losses), there is

VgIg

2
=

V 2
+

R
(9)

and the load current is

IR =
VgIg

2V+
,

which is also the DC component of currentI. (4) can then be
re-written as

iC+ = Ig sinωt(
V−

VDC
+

Vg

VDC
sinωt)− VgIg

2V+
− V−

VDC
iL

=
V−

VDC
ig −

VgIg

2VDC
cos 2ωt

− VgIgV−

2V+VDC
− V−

VDC
iL. (10)

Similarly, (5) can be re-written as

iC− = −Ig sinωt(
V+

VDC
− Vg

VDC
sinωt) + iL(1−

V−

VDC
)

= − V+

VDC
ig −

VgIg

2VDC
cos 2ωt

+
VgIg

2VDC
+

V+

VDC
iL. (11)

As is well known, no DC currents could pass through ca-
pacitors. As a result,iL should have a DC component so
that iC+ and iC− do not have any DC component. It can
be found out from (10) and (11) that the DC component ofiL
is −IR = −VgIg

2V+
, i.e., the same value as the load current.

If the neutral currentiL is controlled to provide the DC
component only, that is,

iL = −IR,

then the capacitor currents are

iC+ =
V−

VDC
ig −

VgIg

2VDC
cos 2ωt

and
iC− = − V+

VDC
ig −

VgIg

2VDC
cos 2ωt.

In addition to the same second-order ripple current
− VgIg

2VDC
cos 2ωt flowing through the split capacitors, the grid

currentig is split betweeniC+ and iC− because in this case

iC+ + (−iC−) = ig,
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which could lead to high voltage ripples and hence bulky
electrolytic capacitors are needed. In order to reduce the
voltage ripples, the current flowing through the capacitors
should be regulated differently. For this reason, a different
control strategy is proposed in the next subsection.

B. Reduction of DC-bus Capacitance

The idea is to push the current components ofiC+ in
(10) through the neutral leg instead of through the upper
split capacitor so thatiC+ does not contain any fundamental
or second order ripple currents. That is to makeiC+ = 0,
ignoring the switching ripples. Hence, according to (10), the
currentiL should be controlled to satisfy

iL = ig −
VgIg

2V−

cos 2ωt− VgIg

2V+
. (12)

On the other hand,iL should also satisfy (6). Hence, in this
case, the current flowing through the lower split capacitor
should be

iC− = −VgIg

2V−

cos 2ωt. (13)

In other words, it only contains the second-order harmonic
component or the second-order component only flows through
the lower split capacitor. As a result, all the voltage ripples are
then diverted to the lower capacitorC−, which would increase
the voltage ripples onC−. However, this does not matter
because there is no load connected toV− and the voltageV−

can tolerate a much higher ripple voltage. Hence, only a small
C− is needed. Since the upper capacitorC+ does not contain
any fundamental and second-order ripple voltage components
any more, it can be reduced a lot while maintaining low
voltage ripples. As a result, both capacitorsC+ andC− can
be very small, which makes it possible to replace the required
bulky electrolytic capacitors with film capacitors.

IV. CONTROL DESIGN

A. Control of the Neutral Leg

The neutral leg should be controlled to maintain the output
voltageV+, to remove the ripple components iniC+ and also
to remove the fundamental component iniC−.

1) Regulation of the output voltageV+: Maintaining a
stable output voltageV+ with very small ripples at the desired
output reference voltageV ∗

+ is a major target. The regulation
of the sum of the voltagesV+ andV−, i.e. the DC-bus voltage
VDC , is the task of the rectification leg and will be discussed in
the next subsection. The neutral leg is responsible for splitting
the DC-bus voltage intoV+ and V−, which are independent
from each other. Since the voltageV+ is used as the output
voltage, it can be directly controlled by forming a voltage
loop and then the voltageV− can be indirectly controlled by
regulating the DC-bus voltage.

In order to regulate the output voltageV+, it is measured
and put through the hold filter

H(s) =
1− e−Ts

Ts
, (14)

where T is the fundamental period of the grid voltage, to
extract its DC component, as shown in Figure 3. A simple

proportional-integral (PI) controller is then applied to regulate
the voltage. The output of the PI controller can be converted
to PWM signals to drive the switches. The parameters for
the PI controller can be selected according to classical design
methods for a second-order system, with the characteristic
equation given by

s2 +
Kp

C+
s+

Ki

C+
= 0,

whereKp and Ki are the gains of the PI controller. These
parameters can be chosen to obtain the damping coefficient of

Kp

2

√

1

C+Ki
=

1√
2
.

As a result,
K2

p = 2C+Ki. (15)

The relationship betweenKp andKi is mostly related to the
capacitorC+. In practice,Kp orKi can be initially set to small
values, which approximately satisfy (15), and then gradually
be increased to achieve the desired performance. In this way,
both parameters can be well tuned.

2) Removal of the ripple components iniC+: As discussed
before, the capacitor currentiC+ should be maintained around
zero in order to smooth the ripples of the output voltageV+.
Note thatC+ is now very small so the ripple current may
flow through the DC load and it is more effective to minimize
the ripple componenti in the DC-bus currentI. As a result,
instead of controllingiC+, the strategy to minimize the DC-
bus ripple currenti is adopted in this paper. In order to extract
this second-order ripple component, a band pass filter (BPF)
is adopted, via adding a resistor–capacitor circuit on the path
of the measuredI to filter out the switching ripples at first
and then using a digital high pass filterss+10 to remove the
DC component. The used resistor and capacitor are10 kΩ
and 0.01µF. As a result, the transfer function of the BPF is

10000s
(s+10)(s+10000) . The cut-off frequencies of the BPF are 1.59
Hz on the lower side and 1591 Hz on the higher side so the
bandwidth of the BPF is 1589 Hz.

Several possible controllers, e.g. hysteresis controllers with
a variable switching frequency and repetitive controllerswith
a fixed switching frequency, can be applied to minimise the
ripple currenti. In order to reduce the stress on the switches,
a repetitive controller is applied in this paper as shown in the
dashed box of Figure 3. Another benefit of the repetitive con-
troller is its high performance to handle harmonics [1], [32].
The repetitive controller consists of a proportional controller
Kr and an internal model given by

C(s) =
Kr

1− ωi

s+ωi
e−τds

,

whereτd is designed based on the analysis in [1], [32] as

τd = τ − 1

ωi
= 0.0196 s

with ωi = 2550, τ = 0.02 s.
Note that the regulation ofV+ deals with the DC component

but the removal of the ripple components ofiC+ deals
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with non-DC components. Hence, the output of the repetitive
controller can be added to the output of the PI controller for
V+ to generate the PWM signals for the switchesQ3 andQ4,
as shown in Figure 3. Note that the “−” sign at the output
of the controllers is because the duty cycle controlled isd3
instead ofd4, which is 1− d3.

In general, the adoption of the BPF does not lead to any
resonance of the controllers with the rectifier. This is mainly
due to the fact that the BPF behaves as a low-pass filter at
high frequencies and is cascaded with the repetitive controller,
which again is a low-pass filter.

3) Removal of fundamental component iniC−: The control
of the DC-bus ripple currenti to 0 leads to the fact that the
ripples are now diverted to the lower capacitorC−. In this
case, the current of the capacitorC− is expected to only have
a second-order component. However, according to (6), when
i = 0, there is

ig = iL − iC− + IR,

which means that the grid currentig could flow through the
inductorLN and the capacitorC− if not controlled properly.
Hence, there is a need to make sure that no fundamental com-
ponent flows through the capacitorC− otherwise it would lead
to increased voltage ripples without providing any benefits.

This can be achieved by forcing the fundamental component
of V− to be zero, as shown in Figure 3. The following resonant
controller

KR(s) =
Kh2ξhωs

s2 + 2ξhωs+ (hω)
2 , (16)

with ξ = 0.01, h = 1, and ω = 2πf , can be adopted.
The output of the resonant controller is then added onto the
outputs of the other two controllers before sending to the
PWM conversion block, as shown in Figure 3. The gainKh of
the resonant controller can be selected by fine tuning through
trial-and-error in practice; it is chosen asKh = 10 for the
experimental system to be tested. In general, a large gain

should improve the performance of the control but may lead
to a large charging current when starting up the system that
might trigger the current protection and also may introduce
noticeable disturbance into the current controller. Theseshould
be avoided. Note that the output of this controller is “+”
because the voltage under control relates toV−.

B. Control of the Rectification Leg

The control of the rectification leg is very similar to that
of conventional half-bridge rectifiers, which is mainly used
to regulate the grid current and to control the whole DC-
bus voltage. To be more precise, the grid current is expected
to be in phase with the grid voltage and also to be clean
with low harmonics. For this purpose, the grid currentig
should be measured as a feedback to form a current tracking
controller. Here, the repetitive controller shown in the dashed
box of Figure 3 is adopted again. In order to generate the grid
current referencei∗g, an outer-loop voltage controller can be
constructed.

There can be different ways to construct this voltage con-
troller; see e.g. [33]. In this paper, the voltage controller is
designed to maintain the maximum voltageV−max of V−

constant. Hence, the total DC-bus voltage is maintained at
V ∗
++V ∗

−max, with a PI controller. The output of the controller
can be used as the peak value of the grid current reference
i∗g, as shown in Figure 4. This is multiplied with the phase
signal of the grid voltage, which can be obtained from a phase-
locked-loop, to form the grid current referencei∗g. As a result,
the grid current is in phase with the grid voltage to achieve
the unity power factor. Here, the phase-locked-loop proposed
in [34] is adopted.

The above-mentioned control strategy of the half-bridge
rectification leg is now somewhat standard [26], [28], [29],
[35]. What is different here is that the maximum DC-bus
voltage, instead of the average DC-bus voltage, is selected
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as the controlled output. As a result, the objective here is set
to control the maximum DC-bus voltage. For this purpose,
the maximum DC-bus voltage should be extracted at first.
Since the voltageV+ is controlled to be more or less pure
DC without second-order components, it is only required to
extract the maximum value of the voltageV−, which can be
obtained by adding the DC component with the peak voltage
of the ripple component, as shown in Figure 4. The hold filter
(14) is again used to obtain the DC component. In order to
extract the second-order component, the resonant filter (16)
is again adopted withξ = 0.01, h = 2, and ω = 2πf . A
Peak block in Figure 4 is used to calculate the peak value of
the ripple component. The sum of the average voltage and the
peak voltage of the ripple component then forms the maximum
voltage of the voltageV−, which is denoted asV−max in
Figure 4 and is added withV+ to obtain the maximum DC-bus
voltage for feedback.

C. Stability of the System

Because of the decoupled nature of the controllers for the
two legs, the stability of the system can be easily guaranteed.
The controller for the rectification leg has a very typical
structure, which is very mature and widely used in industry.
The controller for the neutral leg has a very special structure
with one current loop and two voltage loops. What is special is
that these three loops are in parallel rather than cascaded so the
stability of each loop can be treated individually. The current
loop is designed to regulate the AC components ofiC+

(or i)
to be around zero, i.e., to remove any non-DC components ini.
At the same time, the voltage loop related toV+ is to maintain
the DC component of the voltageV+ while the voltage loop
related toV− is designed to reduce the fundamental component
of voltage V−. Hence, the functions of the three loops are
decoupled in the frequency domain for current or voltage.
The three loops consist of simple PI, repetitive and resonant
controllers, which have been widely analysed in the literature.
See, for example, [1]. Hence, detailed analysis of the stability
of the loops is not repeated in this paper.

V. SELECTION OFCOMPONENTS

A. Selection of CapacitorC−

As demonstrated in [9], [24], the total ripple energy stored
in the split capacitors over a charging period for single-phase
rectifiers with the unity power factor is

Er =
VgIg

2ω
.

With the proposed strategy, all the ripple energy is now stored
on the lower capacitorC− instead of both capacitorsC+ and
C−. Hence,

C− =
2Er

V 2
−max − V 2

−min

(17)

where V−max and V−min are the maximum and minimum
voltages ofV−, respectively. A small capacitor means that
high V−max and/or lowV−min is needed. However, in order
to ensure the proper boost operation of the rectifier,

V− > Vg| sinωt| (18)

should be satisfied. In other words,

V−min > Vg. (19)

At the same time,V−max has an upper bound as well because
of the limit on the devices and/or the applications. Hence, the
capacitor is mainly limited by the allowed maximum voltage
V−amax and the required minimum capacitanceC−min is

C− =
VgIg

ω(V 2
−amax − V 2

−min)
, (20)

which can be small ifV−amax is high enough.
In addition, another important factor for selecting capacitors

is the maximum allowable ripple currents [4], [7], [36]. This
is very important for the reliability of capacitors. In general,
large current ripples lead to short lifetime. The current ripples
are closely related to the voltage ripples and the equivalent
impedance of capacitors. In order to evaluate the level of
voltage ripples, (20) can be rewritten as

C− =
VgIg

ω△V−(V−max + V−min)

=
VgIg

2ω△V−V−ave
(21)

where△V− = V−max − V−min andV−ave = V
−max+V

−min

2
are the peak-peak ripple voltage and the average voltage of
V−, respectively. Since the capacitor impedance at the second-
order frequency is 1

2ωC
−

, the peak-peak value△iC− of the
second-order ripple current flowing throughC− is

△iC− =
△V−

1
2ωC

−

= 2ωC−△V−. (22)

Substitute (21) into (22), then there is

△iC− =
VgIg

V−ave
. (23)

This is consistent with (13). The average voltage should
be increased in order to reduce the ripple current. For the
proposed strategy, the voltageV− can be different or the same
as V+. As a result, the voltageV−ave can be maintained at
a higher value in order to reduce the ripple current. This
can be naturally achieved when the maximum voltageV−max

is controlled at the allowable value because the higher the
maximum voltage is, the higher the average voltageV−ave is.

Of course, some other factors such as hold-up time require-
ment [17], current stress and limited voltage rating of the
capacitors and switches, should be taken into account when
selecting capacitors. If the maximum voltage of the capacitor
is determined, then increased capacitance means increased
hold-up time and reduced current stress, which is preferred
in practical applications. As a result, there are several trade-
offs when selecting capacitors for a certain application.

B. Selection of InductorLN

The fast switching of the neutral leg leads to switching
ripples over the current flowing through the inductorLN .
Since the two switchesQ3 andQ4 are operated complement-
arily, the on time ofQ3 is d3

fs
and the on time ofQ4 is 1−d3

fs
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in one PWM period. Since the switching frequency is much
higher than the line frequency, it can be assumed that the
current increasedV+d3

LNfs
(to withstand the positive voltageV+)

and the current decreasedV−
(1−d3)
LNfs

(to withstand the negative
voltageV−) in these two modes are the same. According to (8),
the maximum peak-peak current ripple△iLm on the inductor
LN is reached when the duty cycled3 reaches the maximum,
which is when the voltageV− reaches the maximum. That is,

△iLm =
V+d3max

LNfs
=

V+V−max

LNfs(V+ + V−max)
. (24)

For the given maximum allowed ripple current△iLm, the
minimum inductance is

LNmin =
V+V−max

△iLmfs(V+ + V−max)
. (25)

The inductance can be reduced if the switching frequency
fs is increased. When choosing the magnetic core for the
inductor, the DC current component iniL should be taken
into consideration to avoid saturation.

Note that increasingV−max helps reduce the capacitorC−

but it leads to increased inductanceLN so there is a trade-off
between these two. One possible option to break this trade-off
is to reduceC− by increasingV−max but decreaseLN by
increasingfs.

C. Selection of CapacitorC+

WhenQ3 is turned on,C+ is discharged throughLN and
the maximum ripple current is given in (24). If the switching
frequency of the rectifier is high and the inductance in series
with the DC load is considered [37], it is reasonable to assume
that the switching ripple current mainly flows through the
capacitorC+. According to [38], the peak-peak switching
ripple voltage across the capacitorC+ is

△V+s =
△iLm

8C+fs
+△iLmRC+

= (
1

8C+fs
+RC+)

V+V−max

LNfs(V+ + V−max)
, (26)

whereRC+ is the equivalent series resistance (ESR) of the
capacitorC+. The second part, i.e.△iLmRC+, is caused by
the ESR of the capacitor. SinceRC+ is often negligible for
film capacitors, (26) becomes

C+min ≈ △iLm

8fs△V+sm
(27)

for the given maximum switching ripple voltage△V+sm and
the maximum ripple current△iLm. Note that increasing the
switching frequency reducesC+.

D. Design Example

Here, an example is given for demonstration. The selected
components, as summarised in Table I, are also used when
building up the test rig.

For the inductorLN with △iLm = 4 A, the required
minimum inductance isLN ≈ 2.1 mH, according to (25).
In this study,2.2 mH is used. Note that the inductor can be

Table I
PARAMETERS OF THE SYSTEM

Parameters Values

Grid voltage (RMS) 110 V
Line frequencyf 50 Hz

Switching frequencyfs 19 kHz
V ∗

+
200 V

V−max 750 V
R 220 Ω

C+ 5 µF
C− 5 µF
LN 2.2 mH
Lg 2.2 mH

reduced a lot if the switching frequencyfs is significantly
increased, again according to (25).

Based on (20), the required minimum capacitance is
C−min =

VgIg
ω(V 2

−max
−V 2

−min
)
≈ 2.76 µF. Here,Ig = 3 A is

used in the calculation, considering the losses of the rectifier.
In order to leave some margin, the capacitorC− is selected as
5 µF. According to (23), the maximum second-order ripple
current is △iC−max =

VgIg
V
−ave

=
VgIg

(V
−max+Vg)/2

≈ 1 A.
The capacitorC− can then be selected based onC−min and
△iC−max.

For the selection of the capacitorC+, according to (27), if
the maximum switching ripple voltage△V+sm is expected to
be around5 V, thenC+min ≈5 µF.

If a conventional single-phase full-bridge rectifier is ad-
opted, then the DC-bus capacitor should be larger than

VgIg
2ω△V

−
V
−ave

≈ 740 µF in order for the output ripple voltage
to be maintained lower than5 V. For capacitors at this level,
electrolytic capacitors are often needed. The experimental res-
ults presented later show that the rectifier under investigation
can achieve5 V output ripple voltage only with two5 µF film
capacitors. This means the DC-bus capacitors can be reduced
by over70 times while maintaining the same level of output
voltage ripples.

VI. I MPACT OF DIFFERENTVOLTAGESV+ AND V−

The voltages across the two split capacitors are normally
maintained to be the same in similar topologies. However, as
mentioned above, the voltages are controlled to be different
on purpose for the proposed strategy, which contributes to
suppressing the voltage ripples and reducing the required
capacitors. One question that arises naturally is whether the
voltage difference would cause any problem to the control of
the rectification leg and the neutral leg. This is analysed in
this section.

A. Impact on the Rectification Leg

The main objective of the rectification leg is to maintain
the grid current to be clean and to be in phase with the grid
voltage. As stated previously, the control of the rectification
leg and the neutral leg are independent from each other. As
a result, the regulation of the input current only depends on
the rectification leg instead of both legs. According to (7),the
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maximum and minimum values of the duty cycle of the two
switches in the rectification leg are

d2max =
1

VDC
(V+ + Vg)

d2min =
1

VDC
(V+ − Vg).

SinceV+, V− > Vg, thend2min > 0 andd2max < 1 can be
achieved for any combinations ofV+ and V−. According to
the average model, the duty cycle of the switchQ2 is

d2 =
V+

VDC
− Vg

VDC
sinωt

=
1

V+ + V−

(V+ − Vg sinωt) (28)

If all the ripple power is provided by the lower capacitor, then
(28) becomes

d2 =
1

V+ +
√

V 2
−min + Po

C
−

(1− sin 2ωt)
(V+ − Vg sinωt)

where the derivation ofV− can be found in [24] for a
given load powerPo. It is clear that the obtained duty cycle
contains a second-order ripple component coming fromV−.
The existence of a second-order ripple component is common
for all rectifiers based on the half-bridge structure and does
not constitute any problem because the switching frequency
is much higher than the second-order frequency. The only
difference here is that the ripples are stored in the lower
capacitor only.

Because the rectification leg is independently controlled,
the input power factor and the THD of the input current can
be regulated as usual and are not affected by the difference
betweenV+ andV−. As a result, the regulation of the input
current is not affected by the voltage difference betweenV+

andV−.

B. Impact on the Neutral Leg

The neutral leg is used for two purposes, i.e. splitting the
DC-bus voltage toV+ andV− and diverting the ripple power
to the lower capacitorC−. According to the average model,
the duty cycle of the switchQ3 can be given as

d3 = 1− V+

VDC

= 1− V+

V+ +
√

V 2
−min + Po

ωC
−

(1− sin 2ωt)
,

which is also affected by a second-order ripple component. As
long asV− < VDC , which is always true becauseVDC = V++
V− > V+, V−, the duty cycled3 can be always achieved by
controlling the two switchesQ3 andQ4 in an complementary
way. Hence, the voltage difference does not cause any problem
to the control of the neutral leg either.

C. Impact on the Current Stress of the Switches

The voltage difference may lead to different current stresses
to the switches. The average currents are very important when
selecting a switch or a diode [26]. As a result, they are
calculated here in order for selecting suitable switches and
diodes for both legs.

1) Switches and diodes of the rectification leg:For the
rectification leg, there are two switches and two diodes in
total. The current flowing through the rectification leg mainly
depends on the grid currentig. The positive cycle of the grid
currentig flows through the SwitchQ2 and the corresponding
free-wheeling diode isD1. On the other hand, the negative
cycle of the grid currentig flows through the SwitchQ1

and the the corresponding free-wheeling diode isD2. As
demonstrated in [26], the average currents flowing through
active switchesQ1 andQ2 and diodesD1 andD2 are

IQ1
=

1

2π

∫ 2π

π

ig(1 − d2)dt = IR(
2V−

Vgπ
− 0.5)

IQ2
=

1

2π

∫ π

0

igd2dt = IR(
2V+

Vgπ
− 0.5) (29)

ID1
=

1

2π

∫ π

0

ig(1− d2)dt = IR(
2V−

Vgπ
+ 0.5)

ID2
=

1

2π

∫ 2π

π

igd2dt = IR(
2V+

Vgπ
+ 0.5).

It can be seen that most of the currents flow through the diodes
rather than the active switches. More importantly, the currents
of the active switches are different ifV+ 6= V−. The same is
true for the diode currents. For example, ifV− > V+, which is
preferred in order to reduceC−, thenIQ1

> IQ2
and ID1

>

ID2
. As a result, the power loss of the upper switchQ1 is

higher than that of the lower switchQ2 if V− > V+. (29) can
be used as a principle to select the active switches and diodes.
Of course, the two voltages can be controlled to be the same.
In this case, the average currents of the switches become the
same and also, the average currents of the switches become
the same too.

2) Switches and diodes of the neutral leg:For the neutral
leg, there are also two switches and two diodes in total. The
current flowing through the neutral leg mainly depends on the
inductor currentiL. In order to analyse the average currents,
similar analysis can be done. The only difference here is the
conduction periods ofQ3, Q4 andD3, D4. For example, the
conduction period of SwitchQ1 in the rectification leg is from
π to 2π, which is not affected by other factors like the input
or output power. This is because the periods of the positive
and negative cycles of the currentig are the same, which is
π. However, it is obvious that those periods of the currentiL
are not the same according to (12), which leads to the fact
that the conduction periods ofQ3, Q4 andD3, D4 are not the
same. In order to calculate their average currents, there isa
need to first know these periods. LetiL = 0, then

Ig sinωt−
VgIg

2V−

cos 2ωt− VgIg

2V+
= 0,

or

sin2 ωt+
V−

Vg
sinωt− 1

2
− V−

2V+
= 0.

Hence,

sinωt = − V−

2Vg
± 1

2

√

V 2
−

V 2
g

+ 2 +
2V−

V+
.
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Because of (19), the “−” sign is not valid. There are two
solutions within[0, π

ω ], which are

t1 =
1

ω
arcsin(

1

2

√

V 2
−

V 2
g

+ 2 +
2V−

V+
− V−

2Vg
),

t2 =
π

ω
− 1

ω
arcsin(

1

2

√

V 2
−

V 2
g

+ 2 +
2V−

V+
− V−

2Vg
).

As a result, the average currents flowing through active
switchesQ3 andQ4 and diodesD3 andD4 can be calculated
from

IQ3
=

1

2π

∫ t2

t1

iLd3dt

IQ4
=

1

2π

∫ t1+2π

t2

iL(1− d3)dt (30)

ID3
=

1

2π

∫ t1+2π

t2

iLd3dt

ID4
=

1

2π

∫ t2

t1

iL(1− d3)dt.

The analytical solutions are complicated but, in principle, the
currentsID3

and ID4
are again higher than the currentsIQ3

and IQ4
. Moreover, becauseV− is set higher thanV+, IQ3

andID3
are higher thanIQ4

andID4
, respectively.

For certain applications with known system parameters, the
average currents flowing through the switches and diodes of
both legs can be easily obtained based on the above analysis.
Together with the voltage stress, i.e. the DC-bus voltageVDC ,
suitable switches and diodes can be selected.

D. Impact on the Voltage Stress of the Switches

In order to choose suitable switches for both legs, the
voltage stress of the switches is another factor to be con-
sidered.

Compared to the current stress of the switches, it is more
straightforward to analyse the voltage stress of the switches.
Regardless of other system parameters, the voltage stress of
the switches is always the sum of the voltagesV+ andV−. It
is well known that low voltage stress generally leads to low
costs and high efficiency. As a result, it is always hoped to
maintain the voltage stress within a reasonable level. Either
decreasingV+ or V− can help to reduce the voltage stress.
The level of the voltageV+ is determined by the requirement
of the DC load and cannot be changed. However, the voltage
V− does have some freedom to be decreased. According to
the discussion before, the proposed rectifier can still perform
well to control the grid current and the DC output voltage as
long as the minimum voltage ofV− is higher than the peak
of the grid voltage. Hence, there isV−min = Vg. Note that
the ripple level of the output voltageV+ is still very low even
if V−min = Vg. The only compromise here is the DC-bus
capacitance. In order to meet a given maximum voltage stress
Vmax, the maximum voltage ofV− is then fixed, which is
V−max = Vmax−V+. It is clear that low voltage stress means
low V−max. Since both maximum and minimum values of the
voltageV− are fixed now, the minimum required capacitance

can be obtained according to (20). The higher the voltage stress
can be, the smaller the capacitanceC− can be. It is worth
mentioning that high voltage stress leads to high switching
loss, which decreases the efficiency. When large electrolytic
capacitors are used, the voltage stress could be lower because
V−max could be reduced. In this case, the switching loss of the
rectifier is lower. However, the loss caused by the ESR of the
capacitors becomes higher because the required capacitance
can be very large and electrolytic capacitors have to be used.
The additional loss caused by the high voltage stress may
have been well compensated by the reduction of the loss in
capacitors.

E. Impact on Switching Ripples of the Grid Current

Since the switching frequency is much higher than the
fundamental frequency, the average grid current over each
switching period can be controlled to track its reference, which
is a sinusoidal signal. Apart from controlling the average grid
current, it is also desirable to maintain the switching ripple of
the grid current under a certain level, in order not to introduce
power pollution to the grid. According to [26], the peak-peak
switching ripple of the grid current can be given as

△ig =

V
−

VDC
VDC + Vg sinωt

Lgfs
d2

=
1

LgfsVDC
(V+V− − V 2

g sin2 ωt) +

(V+ − V−)Vg

LgfsVDC
sinωt. (31)

Apparently, increasing the inductor and/or increasing the
switching frequency could reduce the switching current ripple.
According to (31), the switching ripple current is related to al-
most all system parameters. Compared to most of the analysis
in the literature, the only difference here is that the voltages
V+ andV− are designed to be different on purpose. The first

part of the switching ripple, i.e. 1
Lgfs

(V+V
−

VDC
− V 2

g

VDC
sin2 ωt), is

always positive in the positive and negative half cycles of the
grid current. However, the second part, i.e.(V+−V

−
)Vg

LgfsVDC
sinωt,

changes its sign during the positive and negative cycles of the
grid current. For example, ifV+ < V−, it is negative in the
positive half cycle of the grid current but is positive in the
negative half cycle of the grid current. The resulted effectis
that the switching ripples of the grid current in the negative
half cycle are larger than those in the positive half cycle. If
V+ > V−, then the switching ripples of the grid current in the
negative half cycle are smaller than those in the positive half
cycle. However, the slightly different switching ripples does
not constitute any noticeable problems to the grid. If needed,
an LCL filter, instead of an inductorLg, can be adopted so
that the switching ripple currents can flow through the filter
capacitor instead of the grid.

VII. E XPERIMENTAL VALIDATION

In order to validate the design and operation of the rectifier,
experiments were conducted on a test rig in the lab. The test



10

system consists of the investigated rectifier and its control
circuit, which was constructed based on TMS320F28335 DSP.
The main parameters of the test system are the same as the
ones in the design example of Section V as summarised in
Table I. The system parameters like the inductorLg and the
switching frequency are selected according to the test rig
and the available components in the lab and hence are not
optimized for performance. Note that the two split capacitors
are very small (5µF), which demonstrates the capability
of significantly reducing capacitors while maintaining low
ripples on the DC output voltage. The required usage of
capacitors is reduced by over70 times from 740 µF to 10
µF. Here, two 5µF metallized polypropylene film capacitors
(MKP1848C55012JK2) are used as the two split capacitors
in experiments. The system responses both in the steady state
and during transient period are presented.

A. Steady-state Performance

1) The grid currentig and the DC voltagesV+ and V−:
The system steady-state performance withV ∗

+ = 200 V is
given in Figure 5(a)-(d) forV ∗

−max = 600, V ∗
−max = 650,

V ∗
−max = 700 andV ∗

−max = 750, respectively. It is clear that
the DC output voltageV+ is always maintained around its
reference200 V while the ripple voltage ofV− varies from
337 V to 431 V depending on the maximum voltages ofV−.
Importantly, the voltage ripples of the voltageV+ are only
about 5 V when V ∗

−max = 700 V and 750 V. As a result,
nearly all the ripple power is now stored on the lower capacitor
C− instead of bothC+ andC− over a wide range ofV−. It
is worth again pointing out that only two5µF are used in the
system. The reduction of capacitors and ripples on the output
V+ have been achieved at the same time.

In order to clearly illustrate the relationship between the
voltage ripples and the average voltage on the capacitorC−,
the steady-state performance to reduce the ripple voltage under
different average voltage ofV− is shown in Figure 6. It can be
clearly seen that the ripples ofV+ were kept around5 V over
a wide range ofV− while the ripples ofV− are much larger,
ranging from337 V to 431 V. Furthermore, the ripples ofV−

decreased along with the increase of its average voltage. The
obtained experimental results nicely match the condition (21)
with △V− = 185000

V
−ave

(represented by the dashed line in Figure
6) over a wide range ofV−ave as long as the boost operation
of the rectifier is successful. Here, the number185000 was
found via curve fitting.

Moreover, the grid currentig is always regulated to be clean
and in phase with the grid voltage and, thus, the unity power
factor is achieved. According to the recorded experimental
data, the THD of the grid current is around4% and the input
power factor is above0.99 for all cases. This verifies that the
regulation of the grid current is not affected by large ripples
of V− and the voltage difference betweenV+ andV−. Note
that the experimental test rig is not optimised for high power
quality because it is not the main focus of this paper. In light
of this, the obtained results are very good.

In order to further demonstrate the operation of the system,
another two results are shown in Figures 7 and 8, respectively,
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Figure 5. Grid voltagevg , grid currentig and DC voltagesV+ andV− with
V ∗

+
= 200 V: (a) whenV ∗

−max = 600 V, (b) whenV ∗

−max = 650 V, (c)
whenV ∗

−max = 700 V and (d) whenV ∗

−max = 750 V.

for the cases when the DC voltagesV+ and V− were lower
than the peak grid voltage and when the controller that re-
moves the fundamental component fromiC− was disabled. As
shown in Figure 7, the output voltage ripple becomes around
80 V, much larger than5 V, whenV ∗

−max is set at 500 V. The
relatively low voltages ofV+ andV− also lead to distorted grid
current as highlighted by the dashed circles in Figure 7 when
both voltages are lower than the peak grid voltage. When the
controller that removes the fundamental component fromiC−

was disabled, the results are shown in Figure 8. The voltage
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Figure 6. Voltage ripples ofV+ andV− over a wide range ofV−ave.
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Figure 7. Deteriorated system performance withV ∗

+
= 200 V when

V ∗

−max = 500 V.

V− now consists of a noticeable fundamental component. The
experimental data of Figures 5(c) and 8 were processed in
MATLAB/SIMULINK to extract the fundamental component
and indeed the fundamental component increased from 2 V to
15 V when the resonant controller was disabled.

2) The DC-bus current and the capacitor currents:As
mentioned above, the reduction of the voltage ripples is
achieved by controlling the AC componenti of the DC-bus
current I. In order to show the system performance of the
current control, the waveforms of the DC-bus current and the
capacitors currentsiC+ and iC− over a wide range ofV−

are shown in Figure 9(a)-(d). Note that a low-pass filter with
a cut-off frequency of6 kHz is applied to remove the high
frequency component in the currents. It can be seen that the
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Figure 9. VoltageV−, DC-bus ripple currenti and capacitor currentsiC+ and
iC− with V ∗

+
= 200 V: (a) whenV ∗

−max = 600 V, (b) whenV ∗

−max = 650

V, (c) whenV ∗

−max = 700 V and (d) whenV ∗

−max = 750 V.

AC component of the DC-bus current and the currentiC+

are always maintained around zero for different voltages of
V−. On the other hand, the ripples of the capacitor current
iC− are relatively large because all the ripple power is now
stored on the capacitorC−. In general, it can be seen that
the higher the capacitor voltageV−, the lower the capacitor
current iC−. The relationship between the capacitor voltage
and the capacitor current is shown in Figure 10, which nicely
matches the condition△iC− = 600

V
−ave

, where the number600
was found via curve fitting.
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Figure 10. DC-bus currenti and capacitor currentsiC+ and iC− over a
wide range ofV−ave.
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Figure 11. Comparison of (a) without and (b) with the repetitive current
controller for the neutral leg.

Moreover, the spectra of the DC-bus currentI are shown in
Figure 11(a) and Figure 11(b) to demonstrate the performance
of reducing the second-order ripples in the currentI for the
cases without and with the repetitive controller, respectively.
It is obvious that the second-order harmonic component, i.e.
100 Hz, in the currentI is significantly reduced when the
repetitive controller is enabled. Most of the100 Hz component
is diverted to the neutral leg from the output capacitor. Due
to the diverted100 Hz current, both the ripples of the output
voltageV+ and DC-bus currentI are considerably reduced as
shown in Figure 11(b).

B. Transient Performance

1) System start-up:In order to demonstrate the transient
response of the proposed system, the results during the system

start-up is shown in Figure 12. The grid current first increased
to charge the capacitors and then the current was maintained
well back to its steady-state value after the DC output voltage
was settled. The system start-up took about200 ms, which is
only about10 cycles.

 

 

t: [40 ms/div] 

V+: [250 V/div] 

vg: [103 V/div] 
ig: [8.33 A/div] 

 

System

start-up 

Figure 12. System start-up (V ∗

+
= 200 V and V ∗

−
= 700 V).
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200 V 
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300 V 

Figure 13. Transient response when the reference of the voltage V+ was
changed from200 V to 300 V.

2) Change of the voltage reference:When the reference
of the voltageV+ was changed from200 V to 300 V, the
results are shown in Figure 13. The voltageV+ was smoothly
increased from200 V to 300 V without any spikes. It is worth
highlighting that the ripple level of the output voltageV+ is
always small during the transient period. However, the ripples
of the voltageV− became larger in order to tackle the increased
ripple power caused by the increased voltage reference (and
the power). This transient response took about 2 s, which
is limited by the allowable maximum neutral current of the
experimental system, and could be made much faster if the
allowable maximum neutral current is increased. . For the test
rig, the neutral current is limited by the neutral inductor,which
would be saturated if the neutral current exceeds about5 A.

3) Hold-up time: Although the DC-bus capacitors are
designed for systems without hold-time requirement, it is
still interesting to see how the proposed rectifier responds
to a sudden AC power outage. Here, two experiments were
conducted in order to show the system performance regarding
to the hold-up time under different capacitors. In order fora
fair comparison, only the capacitorC+ was changed while the
other system parameters were kept unchanged. WithC+ = 5
µF, the time for the voltageV+ decreased from200 V to 0 V
is about14 ms as shown in Figure 14(a). Of course, this time
is too short for systems with hold-up requirement. A simple
way to increase this time is to use a larger capacitor. The
experimental result with a larger capacitor (C+ = 100 µF) is
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Figure 14. Transient response after a sudden AC power outagewith (a)
C+ = 5 µF, C− = 10 µF and (b)C+ = 100 µF, C− = 10 µF.

shown in Figure 14(b). Indeed, the voltageV+ was decreased
at a much slower pace, which took about42 ms for the voltage
V+ to decrease from200 V to 0 V. Since the main focus of this
paper is not about the hold-up time, no further mathematical
analysis is made. Interested readers are referred to [17] tosee
how to design capacitors for single-phase rectifiers with hold-
up time requirement.

C. System Performance with a Switching Load

 

 

 

Rb 
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Ib Lb 

Cb V+ Vb 

(a)
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Figure 15. System performance with a buck DC/DC converter and a resistor
as the load of the rectifier.

Apart from resistive loads, rectifiers often have switching
devices connected as loads. Such switching devices can in-

clude DC/DC converters and DC/AC converters. In order to
validate this, a buck DC/DC converter shown in Figure 15(a)
was built as the switching load and its output voltageVb is
regulated to be around48 V while its input voltageV+ is 200
V and the loadRb is 20 Ω. Note that a 470Ω resistor is also
connected across the voltageV+, which means the equivalent
load of the rectifier is a combination of resistive and switching
loads. As shown in Figure 15(b), the voltageV+ (200 V) is
levelled down to the voltageVb (48 V) and the ripples of the
voltageV+ are again kept to be very low. As a result, the
proposed rectifier can indeed work well with both resistive
and switching loads.

VIII. C OMPARISON WITH A TYPICAL SYSTEM

In this section, the proposed rectifier is compared to a
system to evaluate the efficiency performance. In order to be
fair, the system used for comparison should be able to work
with the widely-spread single-phase unbalanced power grid
and also should have the following features: (1) a common
AC and DC ground; (2) capability of working with any power
factor; (3) bidirectional power flow; (4) capability of reducing
the usage of DC capacitors. Because of so many integrated
features, it is not easy to find a suitable solution. For example,
most rectifiers would fail if their AC and DC grounds are
directly connected together. Indeed, there are a few topologies
with common AC and DC ground in the literature, such as the
Zigzag converter proposed in [39] and the Karschny converter
proposed in [40]. However, they are not good candidates for
the comparison because the Karschny converter cannot work
with non-unity power factor [40] while the Zigzag converter
requires relatively large and increased number of capacitors
[39]. It is worth mentioning that the Zigzag converter benefits
with multilevel outputs, which helps improve the power quality
of the grid current and also to reduce the size of AC filters.
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Figure 16. The full-bridge system used for the comparison.

After careful comparison among different systems, the full-
bridge system shown in Figure 16 is used for the comparison.
The isolating transformerT facilitates the direct connection
between AC and DC grounds. Moreover, the conventional
single-phase full-bridge rectifier is used as the interface
between the AC and DC sides to achieve any power factor. At
the same time, a ripple eliminator [8], [11], [12], [13], [14] is
hooked onto the DC bus to absorb the ripple energy. Hence,
the total usage of capacitors can be significantly reduced while
having low DC-bus voltage ripples.
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Based on the above discussion, it is clear that the full-
bridge system shown in Figure 16 is a good candidate for
the comparison because it has all the four main features
of the proposed rectifier. The full-bridge system and the
proposed rectifier have their own merits. For example, the
proposed rectifier does not need the isolating transformer and
the number of used switches are only four, which means
two switches are saved compared to the full-bridge system.
Moreover, it is easier to commercially implement the proposed
rectifier by using a power module with four switches. On the
other hand, the full-bridge system benefits with lower voltage
stress of switches because of the adopted full-bridge topology.
As a result, the switching loss of the full-bridge system is
expected to be lower than the proposed rectifier. However,
because of the reduced number of switches and the removed
isolating transformer, the efficiency of the proposed system
could be comparable with that of the full-bridge system even
if the switching loss of the proposed rectifier is higher.

In order to compare the efficiency between the full-bridge
system and the proposed rectifier, PLECS simulations of
both systems were constructed. The same DC capacitors and
switches are used for both systems for a fair comparison. A 1
kW system was built based on PLECS and MATLAB/Simulink
and the system power ranging from 50 W to 1000 W was
tested by changing the DC load while keeping the DC output
voltage constant. The obtained result is shown in Figure 17.It
is obvious that the proposed rectifier are almost always more
efficient than that of the full-bridge system except when the
power is low (<150 W).

As to power density, the proposed converter is absolutely
higher than the full-bridge system shown in Figure 16. This
also means reduced system cost even if the increased cost of
the switches due to the increased voltage stress.

To sum up, the proposed rectifier is always better than
the full-bridge system shown in Figure 16 in terms of power
density, efficiency and cost, and is a very competitive solution
for high power density rectifiers.

IX. CONCLUSIONS

This paper has addressed a big issue for single-phase
rectifiers, which is to reduce DC-bus capacitors. It has been
demonstrated that the required usage of DC-bus capacitors

can be significantly reduced while maintaining low output
voltage ripples by advanced control strategies. As a result,
highly-reliable film capacitors can be used to replace bulky
electrolytic capacitors. The elimination of DC-bus electrolytic
capacitors is achieved by the neutral leg of the rectifier without
adding any other power components. To be more precise, all
the ripple energy is diverted from the upper (output) capacitor
to the lower capacitor through the neutral leg so that the upper
capacitor can be reduced a lot. At the same time, the voltage
across the lower capacitor is designed to have large ripplesas
it is not supplied to any loads. In this case, both capacitors
can be reduced to a level that film capacitors are cost effective
to be used.

The rectification leg of the rectifier is used to maintain the
grid current and the DC-bus voltage. Importantly, the impact
of different voltages across the capacitors are analysed in
detail. It has been found that the different voltages and large
voltage ripples do not affect the aforementioned functions
of the two legs but do affect the selection of the switches
because the upper switches and lower switches of both legs
may have different voltage and current stresses. Experimental
results have been presented to show that the required usage of
capacitors can be reduced by over 70 times while maintaining
the same level of output voltage ripples for the test rig.
The rectifier can indeed work well without using DC-bus
electrolytic capacitors.
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