40 research outputs found

    Genome Sequence and Comparative Genome Analysis of Lactobacillus casei: Insights into Their Niche-Associated Evolution

    Get PDF
    Lactobacillus casei is remarkably adaptable to diverse habitats and widely used in the food industry. To reveal the genomic features that contribute to its broad ecological adaptability and examine the evolution of the species, the genome sequence of L. casei ATCC 334 is analyzed and compared with other sequenced lactobacilli. This analysis reveals that ATCC 334 contains a high number of coding sequences involved in carbohydrate utilization and transcriptional regulation, reflecting its requirement for dealing with diverse environmental conditions. A comparison of the genome sequences of ATCC 334 to L. casei BL23 reveals 12 and 19 genomic islands, respectively. For a broader assessment of the genetic variability within L. casei, gene content of 21 L. casei strains isolated from various habitats (cheeses, n = 7; plant materials, n = 8; and human sources, n = 6) was examined by comparative genome hybridization with an ATCC 334-based microarray. This analysis resulted in identification of 25 hypervariable regions. One of these regions contains an overrepresentation of genes involved in carbohydrate utilization and transcriptional regulation and was thus proposed as a lifestyle adaptation island. Differences in L. casei genome inventory reveal both gene gain and gene decay. Gene gain, via acquisition of genomic islands, likely confers a fitness benefit in specific habitats. Gene decay, that is, loss of unnecessary ancestral traits, is observed in the cheese isolates and likely results in enhanced fitness in the dairy niche. This study gives the first picture of the stable versus variable regions in L. casei and provides valuable insights into evolution, lifestyle adaptation, and metabolic diversity of L. casei

    Microtiter Plate Assay for Assessment of Listeria monocytogenes Biofilm Formation

    No full text
    Listeria monocytogenes has the ability to form biofilms on food-processing surfaces, potentially leading to food product contamination. The objective of this research was to standardize a polyvinyl chloride (PVC) microtiter plate assay to compare the ability of L. monocytogenes strains to form biofilms. A total of 31 coded L. monocytogenes strains were grown in defined medium (modified Welshimer's broth) at 32°C for 20 and 40 h in PVC microtiter plate wells. Biofilm formation was indirectly assessed by staining with 1% crystal violet and measuring crystal violet absorbance, using destaining solution. Cellular growth rates and final cell densities did not correlate with biofilm formation, indicating that differences in biofilm formation under the same environmental conditions were not due to growth rate differences. The mean biofilm production of lineage I strains was significantly greater than that observed for lineage II and lineage III strains. The results from the standardized microtiter plate biofilm assay were also compared to biofilm formation on PVC and stainless steel as assayed by quantitative epifluorescence microscopy. Results showed similar trends for the microscopic and microtiter plate assays, indicating that the PVC microtiter plate assay can be used as a rapid, simple method to screen for differences in biofilm production between strains or growth conditions prior to performing labor-intensive microscopic analyses

    Inactivation of Listeria monocytogenes on a polyethylene surface modified by layer-by-layer deposition of the antimicrobial N-halamine

    No full text
    Modification of food contact surfaces to be antimicrobial represents an approach to address the problem of cross-contamination in the food industry. The effect of increasing levels of surface modification on low density polyethylene (LDPE) through application of N-halamines on the inactivation kinetics of Listeria monocytogenes Scott A was evaluated. Increasing levels of modification were applied through layer by layer deposition on LDPE surface (1-5 double layers of polyethyleneimine and poly(acrylic acid)). Surface modification was achieved and confirmed through Fourier Transform Infrared Spectroscopy (FTIR). From I to 5 double layers, the N-halamine content ranged from 3.42 +/- 1.2 to 27.30 +/- 3.5 nmol cm(-2). More than four logarithmic cycles (>99.99%) reduction was reached against L. monocytogenes Scott A after different contact times depending on the level of modification, that varied from 50 to 110 min (from 5 to 2 double layers). Inactivation kinetics followed a sigmoidal behavior. (c) 2013 Elsevier Ltd. All rights reserved
    corecore