116 research outputs found

    Mobile phones as fomites for pathogenic microbes: A cross-sectional survey of perceptions and sanitization habits of health care workers in Dubai, United Arab Emirates

    Get PDF
    Backgrounds In 2022, smartphone use continues to expand with the number of smartphone subscriptions surpassing 6 billion and forecasted to grow to 7.5 billion by 2026. The necessity of these ‘high touch’ devices as essential tools in professional healthcare settings carries great risks of cross-contamination between mobile phones and hands. Current research emphasises mobile phones as fomites enhancing the risk of nosocomial disease dissemination as phone sanitisation is often overlooked. To assess and report via a large-scale E-survey the handling practices and the use of phones by healthcare workers. Methods A total of 377 healthcare workers (HCWs) participated in this study to fill in an E-survey online consisting of 14 questions (including categorical, ordinal, and numerical data). Analysis of categorical data used non-parametric techniques such as Pearson's chi-squared test. Results During an 8-h shift, 92.8% (n/N = 350/377) use their phone at work with 84.6% (n/N = 319/377) considering mobile phones as an essential tool for their job. Almost all HCWs who participated in this survey believe their mobile phones could potentially harbour microorganisms (97.1%; n/N = 366/377). Fifty-seven respondents (15.1%) indicated that they use their phones while wearing gloves and 10.3% (n/N = 39/377) have never cleaned their phones. The majority of respondents (89.3%; n/N = 337/377) agreed that contaminated mobile phones could contribute to dissemination of SARS-CoV-2. Conclusion Mobile phone use is now almost universal and indispensable in healthcare. Medical staff believe mobile phones can act as fomites with a potential risk for dissemination of microbes including SARS-COV-2. There is an urgent call for the incorporation of mobile phone sanitisation in infection prevention protocol. Studies on the use of ultraviolet-C based phone sanitation devices in health care settings are needed

    Organic facies of the Frome Embayment and Callabonna Sub-basin: what and where are the uranium reductants?

    Get PDF
    Bernd H Michaelsen, Adrian J Fabris, John L Keeling, David M McKirdy, Laszlo F Katona and Les R Tucke

    A pilot metagenomic study reveals that community derived mobile phones are reservoirs of viable pathogenic microbes

    Get PDF
    There is increasing attention focussed on the risks associated with mobile phones possibly serving as ‘Trojan Horse’ fomites for microbial transmission in healthcare settings. However, little is reported on the presence of microbes on community derived mobile phones which in 2021, numbered in the billions in circulation with majority being used on a daily basis. Identify viable microbial organisms swabbed from smartphones on a university campus. Entire surfaces of 5 mobile phones were swabbed and examined for their microbial content using pre-agar-based growths followed by downstream DNA metagenomic next-generation sequencing analysis. All phones were contaminated with viable microbes. 173 bacteria, 8 fungi, 8 protists, 53 bacteriophages, 317 virulence factor genes and 41 distinct antibiotic resistant genes were identified. While this research represents a pilot study, the snapshot metagenomic analysis of samples collected from the surface of mobile phones has revealed the presence of a large population of viable microbes and an array of antimicrobial resistant factors. With billions of phones in circulation, these devices might be responsible for the rise of community acquired infections. These pilot results highlight the importance of public health authorities considering mobile phones as ‘Trojan Horse’ devices for microbial transmission and ensure appropriate decontamination campaigns are implemented

    Metagenomic sequencing and reverse transcriptase PCR reveal that mobile phones and environmental surfaces are reservoirs of Multidrug-Resistant superbugs and SARS-CoV-2

    Get PDF
    Background: Mobile phones of healthcare workers (HCWs) can act as fomites in the dissemination of microbes. This study was carried out to investigate microbial contamination of mobile phones of HCWs and environmental samples from the hospital unit using a combination of phenotypic and molecular methods. Methods: This point prevalence survey was carried out at the Emergency unit of a tertiary care facility. The emergency unit has two zones, a general zone for non-COVID-19 patients and a dedicated COVID-19 zone for confirmed or suspected COVID-19 patients. Swabs were obtained from the mobile phones of HCWs in both zones for bacterial culture and shotgun metagenomic analysis. Metagenomic sequencing of pooled environmental swabs was conducted. RT-PCR for SARS-CoV-2 detection was carried out. Results: Bacteria contamination on culture was detected from 33 (94.2%) mobile phones with a preponderance of Staphylococcus epidermidis (n/N = 18/35), Staphylococcus hominis (n/N = 13/35), and Staphylococcus haemolyticus (n/N = 7/35). Two methicillin-sensitive and three methicillin-resistant Staphylococcus aureus, and one pan-drug-resistant carbapenemase producer Acinetobacter baumannii were detected. Shotgun metagenomic analysis showed high signature of Pseudomonas aeruginosa in mobile phone and environmental samples with preponderance of P. aeruginosa bacteriophages. Malassezia and Aspergillus spp. were the predominant fungi detected. Fourteen mobile phones and one environmental sample harbored protists. P. aeruginosa antimicrobial resistance genes mostly encoding for efflux pump systems were detected. The P. aeruginosa virulent factor genes detected were related to motility, adherence, aggregation, and biofilms. One mobile phone from the COVID-19 zone (n/N = 1/5; 20%) had positive SARS-CoV-2 detection while all other phone and environmental samples were negative. Conclusion: The findings demonstrate that mobile phones of HCWs are fomites for potentially pathogenic and highly drug-resistant microbes. The presence of these microbes on the mobile phones and hospital environmental surfaces is a concern as it poses a risk of pathogen transfer to patients and dissemination into the community

    Matched increases in cerebral artery shear stress, irrespective of stimulus, induce similar changes in extra-cranial arterial diameter in humans.

    Get PDF
    The mechanistic role of arterial shear stress in the regulation of cerebrovascular responses to physiological stimuli (exercise and hypercapnia) is poorly understood. We hypothesised that, if shear stress is a key regulator of arterial dilation, then matched increases in shear, induced by distinct physiological stimuli, would trigger similar dilation of the large extra-cranial arteries. Participants ( n = 10) participated in three 30-min experimental interventions, each separated by ≥48 h: (1) mild-hypercapnia (FICO2:∼0.045); (2) submaximal cycling (EX; 60%HRreserve); or (3) resting (time-matched control, CTRL). Blood flow, diameter, and shear rate were assessed (via Duplex ultrasound) in the internal carotid and vertebral arteries (ICA, VA) at baseline, during and following the interventions. Hypercapnia and EX produced similar elevations in blood flow and shear rate through the ICA and VA ( p < 0.001), which were both greater than CTRL. Vasodilation of ICA and VA diameter in response to hypercapnia (5.3 ± 0.8 and 4.4 ± 2.0%) and EX (4.7 ± 0.7 and 4.7 ± 2.2%) were similar, and greater than CTRL ( p < 0.001). Our findings indicate that matched levels of shear, irrespective of their driving stimulus, induce similar extra-cranial artery dilation. We demonstrate, for the first time in humans, an important mechanistic role for the endothelium in regulating cerebrovascular response to common physiological stimuli in vivo

    Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae)

    Get PDF
    The fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), is native to the Americas. It has rapidly invaded 47 African countries and 18 Asian countries since the first detection of invasion into Nigeria and Ghana in 2016. It is regarded as a super pest based on its host range (at least 353 host plants), its inherent ability to survive in a wide range of habitats, its strong migration ability, high fecundity, rapid development of resistance to insecticides/viruses and its gluttonous characteristics. The inherently superior biological characteristics of FAW contribute to its invasiveness. Integrated pest management (IPM) of FAW has relied on multiple applications of monitoring and scouting, agricultural control, chemical pesticides, viral insecticides, sex attractants, bio-control agents (parasitoids, predators and entomopathogens) and botanicals. Knowledge gaps remain to be filled to: (1) understand the invasive mechanisms of S. frugiperda; (2) understand how to prevent its further spread and (3) provide better management strategies. This review summarizes the biological characters of FAW, their association with its invasiveness and IPM strategies, which may provide further insights for future management

    SARS-CoV-2 infection, clinical features and outcome of COVID-19 in United Kingdom nursing homes.

    Get PDF
    OBJECTIVES: To understand SARS-Co-V-2 infection and transmission in UK nursing homes in order to develop preventive strategies for protecting the frail elderly residents. METHODS: An outbreak investigation involving 394 residents and 70 staff, was carried out in 4 nursing homes affected by COVID-19 outbreaks in central London. Two point-prevalence surveys were performed one week apart where residents underwent SARS-CoV-2 testing and had relevant symptoms documented. Asymptomatic staff from three of the four homes were also offered SARS-CoV-2 testing. RESULTS: Overall, 26% (95% CI 22-31) of residents died over the two-month period. All-cause mortality increased by 203% (95% CI 70-336) compared with previous years. Systematic testing identified 40% (95% CI 35-46) of residents as positive for SARS-CoV-2, and of these 43% (95% CI 34-52) were asymptomatic and 18% (95% CI 11-24) had only atypical symptoms; 4% (95% CI -1 to 9) of asymptomatic staff also tested positive. CONCLUSIONS: The SARS-CoV-2 outbreak in four UK nursing homes was associated with very high infection and mortality rates. Many residents developed either atypical or had no discernible symptoms. A number of asymptomatic staff members also tested positive, suggesting a role for regular screening of both residents and staff in mitigating future outbreaks

    Hippocampal function in schizophrenia and bipolar disorder

    Get PDF
    Background. The hippocampus plays a central role in memory formation. There is considerable evidence of abnormalities in hippocampal structure and function in schizophrenia, which may differentiate it from bipolar disorder. However, no previous studies have compared hippocampal activation in schizophrenia and bipolar disorder directly. Method. Fifteen patients with schizophrenia, 14 patients with bipolar disorder and 14 healthy comparison subjects took part in the study. Subjects performed a face name pair memory task during functional magnetic resonance imaging (fMRI). Differences in blood oxygen level-dependent (BOLD) activity were determined during encoding and retrieval of the face name pairs. Results. The patient groups showed significant differences in hippocampal and prefrontal cortex (PFC) activation during face name pair learning. During encoding, patients with schizophrenia showed decreased anterior hippocampal activation relative to subjects with bipolar disorder, whereas patients with bipolar disorder showed decreased dorsal PFC activation relative to patients with schizophrenia. During retrieval, patients with schizophrenia showed greater activation of the dorsal PFC than patients with bipolar disorder. Patients with schizophrenia also differed from healthy control subjects in the activation of several brain regions, showing impaired superior temporal cortex activation during encoding and greater dorsal PFC activation during retrieval. These effects were evident despite matched task performance. Conclusions. Patients with schizophrenia showed deficits in hippocampal activation during a memory task relative to patients with bipolar disorder. The disorders were further distinguished by differences in PFC activation. The results demonstrate that these disorders can distinguished at a group level using non-invasive neuroimaging

    Onset of the aerobic nitrogen cycle during the Great Oxidation Event

    Get PDF
    The rise of oxygen on the early Earth (about 2.4 billion years ago)1 caused a reorganization of marine nutrient cycles2, 3, including that of nitrogen, which is important for controlling global primary productivity. However, current geochemical records4 lack the temporal resolution to address the nature and timing of the biogeochemical response to oxygenation directly. Here we couple records of ocean redox chemistry with nitrogen isotope (15N/14N) values from approximately 2.31-billion-year-old shales5 of the Rooihoogte and Timeball Hill formations in South Africa, deposited during the early stages of the first rise in atmospheric oxygen on the Earth (the Great Oxidation Event)6. Our data fill a gap of about 400 million years in the temporal 15N/14N record4 and provide evidence for the emergence of a pervasive aerobic marine nitrogen cycle. The interpretation of our nitrogen isotope data in the context of iron speciation and carbon isotope data suggests biogeochemical cycling across a dynamic redox boundary, with primary productivity fuelled by chemoautotrophic production and a nitrogen cycle dominated by nitrogen loss processes using newly available marine oxidants. This chemostratigraphic trend constrains the onset of widespread nitrate availability associated with ocean oxygenation. The rise of marine nitrate could have allowed for the rapid diversification and proliferation of nitrate-using cyanobacteria and, potentially, eukaryotic phytoplankton
    • …
    corecore