75 research outputs found

    Five steps in the evolution from protoplanetary to debris disk

    Get PDF
    The protoplanetary disks of Herbig Ae stars eventually dissipate leaving a tenuous debris disk comprised of planetesimals and dust, as well as possibly gas and planets. This paper uses the properties of 10-20Myr A star debris disks to consider the protoplanetary to debris disk transition. The physical distinction between these two classes is argued to rest on the presence of primordial gas in sufficient quantities to dominate the motion of small dust grains (not the secondary nature of the dust or its level of stirring). This motivates an observational classification based on the dust spectrum, empirically defined so that A star debris disks require fractional excesses <3 at 12um and <2000 at 70um. We also propose a hypothesis to test, that the main sequence planet/planetesimal structures are already in place (but obscured) during the protoplanetary disk phase. This may be only weakly true if planetary architectures change until frozen during disk dispersal, or completely false if planets and planetesimals form during disk dispersal. Five steps in the transition are discussed: (i) carving an inner hole to form a transition disk; (ii) depletion of mm-sized dust in outer disk, noting the importance of determining whether this mass ends up in planetesimals or is collisionally depleted; (iii) final clearing of inner regions, noting that many mechanisms replenish moderate hot dust levels at later phases, and likely also operate in protoplanetary disks; (iv) disappearence of gas, noting recent discoveries of primordial and secondary gas in debris disks that highlight our ignorance and its impending enlightenment by ALMA; (v) formation of ring-like planetesimal structures, noting these are shaped by interactions with planets, and that the location of planetesimals in protoplanetary disks may be unrelated to the dust concentrations therein that are set by gas interactions.The authors are grateful for support from the European Union through ERC grant number 279973.This is the author accepted manuscript. The final version is available via Springer at http://link.springer.com/article/10.1007/s10509-015-2315-6/fulltext.html

    Searching for a dusty cometary belt around TRAPPIST-1 with ALMA

    Get PDF
    Low-mass stars might offer today the best opportunities to detect and characterize planetary systems, especially those harbouring close-in low-mass temperate planets. Among those stars, TRAPPIST-1 is exceptional since it has seven Earth-sized planets, of which three could sustain liquid water on their surfaces. Here we present new and deep ALMA observations of TRAPPIST-1 to look for an exo-Kuiper belt which can provide clues about the formation and architecture of this system. Our observations at 0.88 mm did not detect dust emission, but can place an upper limit of 23 µJy if the belt is smaller than 4 au, and 0.15 mJy if resolved and 100 au in radius. These limits correspond to low dust masses of ̃10-5 to 10-2 M⊕, which are expected after 8 Gyr of collisional evolution unless the system was born with a >20 M⊕ belt of 100 km-sized planetesimals beyond 40 au or suffered a dynamical instability. This 20 M⊕ mass upper limit is comparable to the combined mass in TRAPPIST-1 planets, thus it is possible that most of the available solid mass in this system was used to form the known planets. A similar analysis of the ALMA data on Proxima Cen leads us to conclude that a belt born with a mass ≳1 M⊕ in 100 km-sized planetesimals could explain its putative outer belt at 30 au. We recommend that future characterizations of debris discs around low-mass stars should focus on nearby and young systems if possible

    Identification of transitional disks in Chamaeleon with Herschel

    Get PDF
    Transitional disks are circumstellar disks with inner holes that in some cases are produced by planets and/or substellar companions in these systems. For this reason, these disks are extremely important for the study of planetary system formation. The Herschel Space Observatory provides an unique opportunity for studying the outer regions of protoplanetary disks. In this work we update previous knowledge on the transitional disks in the Chamaeleon I and II regions with data from the Herschel Gould Belt Survey. We propose a new method for transitional disk classification based on the WISE 12 micron-PACS 70 micron color, together with inspection of the Herschel images. We applied this method to the population of Class II sources in the Chamaeleon region and studied the spectral energy distributions of the transitional disks in the sample. We also built the median spectral energy distribution of Class II objects in these regions for comparison with transitional disks. The proposed method allows a clear separation of the known transitional disks from the Class II sources. We find 6 transitional disks, all previously known, and identify 5 objects previously thought to be transitional as possibly non-transitional. We find higher fluxes at the PACS wavelengths in the sample of transitional disks than those of Class II objects. We show the Herschel 70 micron band to be an efficient tool for transitional disk identification. The sensitivity and spatial resolution of Herschel reveals a significant contamination level among the previously identified transitional disk candidates for the two regions, which calls for a revision of previous samples of transitional disks in other regions. The systematic excess found at the PACS bands could be a result of the mechanism that produces the transitional phase, or an indication of different evolutionary paths for transitional disks and Class II sources.Comment: Accepted for publication in A&A: 11 March 2013 11 pages, 15 figure

    ALMA observations of the narrow HR 4796A debris ring

    Get PDF
    The young A0V star HR 4796A is host to a bright and narrow ring of dust, thought to originate in collisions between planetesimals within a belt analogous to the Solar system’s Edgeworth–Kuiper belt. Here we present high spatial resolution 880 μm continuum images from the Atacama Large Millimeter Array. The 80 au radius dust ring is resolved radially with a characteristic width of 10 au, consistent with the narrow profile seen in scattered light. Our modelling consistently finds that the disc is also vertically resolved with a similar extent. However, this extent is less than the beam size, and a disc that is dynamically very cold (i.e. vertically thin) provides a better theoretical explanation for the narrow scattered light profile, so we remain cautious about this conclusion. We do not detect 12CO J=3–2 emission, concluding that unless the disc is dynamically cold the CO+CO2 ice content of the planetesimals is of order a few per cent or less. We consider the range of semi-major axes and masses of an interior planet supposed to cause the ring’s eccentricity, finding that such a planet should be more massive than Neptune and orbit beyond 40 au. Independent of our ALMA observations, we note a conflict between mid-IR pericentre-glow and scattered light imaging interpretations, concluding that models where the spatial dust density and grain size vary around the ring should be explored

    Predictions for the secondary CO, C and O gas content of debris discs from the destruction of volatile-rich planetesimals

    Get PDF
    This paper uses observations of dusty debris discs, including a growing number of gas detections in these systems, to test our understanding of the origin and evolution of this gaseous component. It is assumed that all debris discs with icy planetesimals create second generation CO, C and O gas at some level, and the aim of this paper is to predict that level and assess its observability. We present a new semi-analytical equivalent of the numerical model of Kral et al. allowing application to large numbers of systems. That model assumes CO is produced from volatile-rich solid bodies at a rate that can be predicted from the debris discs fractional luminosity. CO photodissociates rapidly into C and O that then evolve by viscous spreading. This model provides a good qualitative explanation of all current observations, with a few exceptional systems that likely have primordial gas. The radial location of the debris and stellar luminosity explain some non-detections, e.g. close-in debris (like HD 172555) is too warm to retain CO, while high stellar luminosities (like η Tel) result in short CO lifetimes. We list the most promising targets for gas detections, predicting >15 CO detections and >30 C i detections with ALMA, and tens of C ii and O i detections with future far-IR missions. We find that CO, C i, C ii and O i gas should be modelled in non-LTE for most stars, and that CO, C i and O i lines will be optically thick for the most gas-rich systems. Finally, we find that radiation pressure, which can blow out C i around early-type stars, can be suppressed by self-shielding.QK, LM and MCW acknowledge support from the European Union through ERC grant number 279973. QK and MCW acknowledge funding from STFC via the Institute of Astronomy, Cambridge Consolidated Grant. GMK is supported by the Royal Society as a Royal Society University Research Fellow. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA

    Comprehensive analysis of HD 105, a young solar system analog

    Get PDF
    HD 105 is a nearby, pre-main-sequence G0 star hosting a moderately bright debris disk (L dust/L ⋆ ∼ 2.6 × 10‑4). The star and its surroundings might therefore be considered an analog of the young solar system. We refine the stellar parameters based on an improved Gaia parallax distance and identify it as a pre-main-sequence star with an age of 50 ± 16 Myr. The circumstellar disk was marginally resolved by Herschel/PACS imaging at far-infrared wavelengths. Here, we present an archival ALMA observation at 1.3 mm, revealing the extent and orientation of the disk. We also present Hubble Space Telescope (HST)/NICMOS and VLT/SPHERE near-infrared images, where we recover the disk in scattered light at the ≥5σ level. This was achieved by employing a novel annular averaging technique and is the first time this has been achieved for a disk in scattered light. Simultaneous modeling of the available photometry, disk architecture, and detection in scattered light allow better determination of the disk’s architecture, and dust grain minimum size, composition, and albedo. We measure the dust albedo to lie between 0.19 and 0.06, the lower value being consistent with Edgeworth–Kuiper Belt objects

    Kuiper belt-like hot and cold populations of planetesimal inclinations in the β Pictoris belt revealed by ALMA

    Get PDF
    The inclination distribution of the Kuiper belt provides unique constraints on its origin and dynamical evolution, motivating vertically resolved observations of extrasolar planetesimal belts. We present ALMA observations of millimeter emission in the near edge-on planetesimal belt around β Pictoris, finding that the vertical distribution is significantly better described by the sum of two Gaussians compared to a single Gaussian. This indicates that, as for the Kuiper belt, the inclination distribution of β Pic's belt is better described by the sum of dynamically hot and cold populations rather than a single component. The hot and cold populations have RMS inclinations of 8.9+0.7-0.5 and 1.1+0.5-0.5 degrees. We also report that an axisymmetric belt model provides a good fit to new and archival ALMA visibilities, and confirm that the midplane is misaligned with respect to β Pic b's orbital plane. However, we find no significant evidence for either the inner disk tilt observed in scattered light and CO emission or the South-West/North-East (SW/NE) asymmetry previously reported for millimeter emission. Finally, we consider the origin of the belt's inclination distribution. Secular perturbations from β Pic b are unlikely to provide sufficient dynamical heating to explain the hot population throughout the belt's radial extent, and viscous stirring from large bodies within the belt alone cannot reproduce the two populations observed. This argues for an alternative or additional scenario, such as planetesimals being born with high inclinations, or the presence of a `β Pic c' planet, potentially migrating outwards near the belt's inner edge

    ALMA Survey of Lupus Class III Stars: Early Planetesimal Belt Formation and Rapid Disk Dispersal

    Get PDF
    Class III stars are those in star forming regions without large non-photospheric infrared emission, suggesting recent dispersal of their protoplanetary disks. We observed 30 class III stars in the 1-3 Myr Lupus region with ALMA at ∼856μm, resulting in 4 detections that we attribute to circumstellar dust. Inferred dust masses are 0.036 − 0.093M⊕, ∼1 order of magnitude lower than any previous measurements; one disk is resolved with radius ∼80 au. Two class II sources in the field of view were also detected, and 11 other sources, consistent with sub-mm galaxy number counts. Stacking non-detections yields a marginal detection with mean dust mass ∼0.0048M⊕. We searched for gas emission from the CO J=3-2 line, and present its detection to NO Lup inferring a gas mass (4.9 ± 1.1) × 10−5 M⊕ and gas-to-dust ratio 1.0 ± 0.4. Combining our survey with class II sources shows a gap in the disk mass distribution from 0.09 − 2M⊕ for >0.7M⊙ Lupus stars, evidence of rapid dispersal of mm-sized dust from protoplanetary disks. The class III disk mass distribution is consistent with a population model of planetesimal belts that go on to replenish the debris disks seen around main sequence stars. This suggests that planetesimal belt formation does not require long-lived protoplanetary disks, i.e., planetesimals form within ∼2 Myr. While all 4 class III disks are consistent with collisional replenishment, for two the gas and/or mid-IR emission could indicate primordial circumstellar material in the final stages of protoplanetary disk dispersal. Two class III stars without sub-mm detections exhibit hot emission that could arise from ongoing planet formation processes inside ∼1 au

    Kuiper belt structure around nearby super-Earth host stars

    Get PDF
    We present new observations of the Kuiper belt analogues around HD 38858 and HD 20794, hosts of super-Earth mass planets within 1 au. As two of the four nearby G-type stars (with HD 69830 and 61 Vir) that form the basis of a possible correlation between low-mass planets and debris disc brightness, these systems are of particular interest. The disc around HD 38858 is well resolved with Herschel and we constrain the disc geometry and radial structure. We also present a probable James Clerk Maxwell Telescope sub-mm continuum detection of the disc and a CO J = 2–1 upper limit. The disc around HD 20794 is much fainter and appears marginally resolved with Herschel, and is constrained to be less extended than the discs around 61 Vir and HD 38858. We also set limits on the radial location of hot dust recently detected around HD 20794 with near-IR interferometry. We present High Accuracy Radial velocity Planet Searcher upper limits on unseen planets in these four systems, ruling out additional super-Earths within a fewau, and Saturn-mass planets within 10 au. We consider the disc structure in the three systems with Kuiper belt analogues (HD 69830 has only a warm dust detection), concluding that 61 Vir and HD 38858 have greater radial disc extent than HD 20794. We speculate that the greater width is related to the greater minimum planet masses (10–20 M⊕ versus 3–5 M⊕), arising from an eccentric planetesimal population analogous to the Solar system’s scattered disc. We discuss alternative scenarios and possible means to distinguish among them.We thank the referee for a thoughtful review. This work was supported by the European Union through ERC grant number 279973 (GMK, LM, and MCW). LM also acknowledges support by both STFC and ESO through graduate studentships. MM, CL, FP, and SU acknowledge the Swiss National Science Foundation (SNSF) for the continuous support of the RV research programmes.This is the final published version. It first appeared at http://mnras.oxfordjournals.org/content/449/3/3121.abstract
    corecore