641 research outputs found
Observation of the Kohn anomaly near the K point of bilayer graphene
The dispersion of electrons and phonons near the K point of bilayer graphene
was investigated in a resonant Raman study using different laser excitation
energies in the near infrared and visible range. The electronic structure was
analyzed within the tight-binding approximation, and the
Slonczewski-Weiss-McClure (SWM) parameters were obtained from the analysis of
the dispersive behavior of the Raman features. A softening of the phonon
branches was observed near the K point, and results evidence the Kohn anomaly
and the importance of considering electron-phonon and electron-electron
interactions to correctly describe the phonon dispersion in graphene systems.Comment: 4 pages, 4 figure
Group theory analysis of electrons and phonons in N-layer graphene systems
In this work we study the symmetry properties of electrons and phonons in
graphene systems as function of the number of layers. We derive the selection
rules for the electron-radiation and for the electron-phonon interactions at
all points in the Brillouin zone. By considering these selection rules, we
address the double resonance Raman scattering process. The monolayer and
bilayer graphene in the presence of an applied electric field are also
discussed.Comment: 8 pages, 6 figure
Observation of Distinct Electron-Phonon Couplings in Gated Bilayer Graphene
A Raman study of a back gated bilayer graphene sample is presented. The
changes in the Fermi level induced by charge transfer splits the Raman G-band,
hardening its higher component and softening the lower one. These two
components are associated with the symmetric (S) and anti-symmetric vibration
(AS) of the atoms in the two layers, the later one becoming Raman active due to
inversion symmetry breaking. The phonon hardening and softening are explained
by considering the selective coupling of the S and AS phonons with interband
and intraband electron-hole pairs.Comment: 4 pages, 4 figure
Probing the Electronic Structure of Bilayer Graphene by Raman Scattering
The electronic structure of bilayer graphene is investigated from a resonant
Raman study using different laser excitation energies. The values of the
parameters of the Slonczewski-Weiss-McClure model for graphite are measured
experimentally and some of them differ significantly from those reported
previously for graphite, specially that associated with the difference of the
effective mass of electrons and holes. The splitting of the two TO phonon
branches in bilayer graphene is also obtained from the experimental data. Our
results have implications for bilayer graphene electronic devices.Comment: 4 pages, 4 figure
Spatial variability in Antarctic surface snow bacterial communities
It was once a long-held view that the Antarctic was a pristine environment with low biomass, low biodiversity and low rates of microbial activity. However, as the intensity of scientific investigation has increased, so these views have started to change. In particular, the role and impact of human activity toward indigenous microbial communities has started to come under more intense scrutiny. During the Subglacial Lake Ellsworth exploration campaign in December 2012, a microbiological survey was conducted to determine the extent and likelihood of exogenous input into the subglacial lake system during the hot-water drilling process. Snow was collected from the surface to represent that used for melt water production for hot-water drilling. The results of this study showed that snow used to provide melt water differed in its microbiological composition from that of the surrounding area and raised the question of how the biogeography of snow-borne microorganisms might influence the potential outcome of scientific analyses. In this study, we investigated the biogeography of microorganisms in snow around a series of Antarctic logistic hubs, where human activity was clearly apparent, and from which scientific investigations have been undertaken. A change in microbial community structure with geographical location was apparent and, notably, a decrease in alpha diversity at more remote southern latitudes. Soil-related microorganisms dominated microbial assemblages suggesting terrestrial input, most likely from long-range aeolian transport into continental Antarctica. We also observed that relic DNA was not a major issue when assessing snow samples. Overall, our observations might have profound implications for future scientific activities in Antarctica, such as the need to establish “no-go” protected areas, the need for better characterization of field sites and improved protocols for sterilization and verification of ice drilling equipment
The electronic properties of bilayer graphene
We review the electronic properties of bilayer graphene, beginning with a
description of the tight-binding model of bilayer graphene and the derivation
of the effective Hamiltonian describing massive chiral quasiparticles in two
parabolic bands at low energy. We take into account five tight-binding
parameters of the Slonczewski-Weiss-McClure model of bulk graphite plus intra-
and interlayer asymmetry between atomic sites which induce band gaps in the
low-energy spectrum. The Hartree model of screening and band-gap opening due to
interlayer asymmetry in the presence of external gates is presented. The
tight-binding model is used to describe optical and transport properties
including the integer quantum Hall effect, and we also discuss orbital
magnetism, phonons and the influence of strain on electronic properties. We
conclude with an overview of electronic interaction effects.Comment: review, 31 pages, 15 figure
Sine-Gordon Model - Renormalization Group Solutions and Applications
The sine-Gordon model is discussed and analyzed within the framework of the
renormalization group theory. A perturbative renormalization group procedure is
carried out through a decomposition of the sine-Gordon field in slow and fast
modes. An effective slow modes's theory is derived and re-scaled to obtain the
model's flow equations. The resulting Kosterlitz-Thouless phase diagram is
obtained and discussed in detail. The theory's gap is estimated in terms of the
sine-Gordon model paramaters. The mapping between the sine-Gordon model and
models for interacting electrons in one dimension, such as the g-ology model
and Hubbard model, is discussed and the previous renormalization group results,
obtained for the sine-Gordon model, are thus borrowed to describe different
aspects of Luttinger liquid systems, such as the nature of its excitations and
phase transitions. The calculations are carried out in a thorough and
pedagogical manner, aiming the reader with no previous experience with the
sine-Gordon model or the renormalization group approach.Comment: 44 pages, 7 figure
Soil protist function varies with elevation in the Swiss Alps
Protists are abundant and play key trophic functions in soil. Documenting how their trophic contributions vary across large environmental gradients is essential to understand and predict how biogeochemical cycles will be impacted by global changes. Here, using amplicon sequencing of environmental DNA in open habitat soil from 161 locations spanning 2600 m of elevation in the Swiss Alps (from 400 to 3000 m), we found that, over the whole study area, soils are dominated by consumers, followed by parasites and phototrophs. In contrast, the proportion of these groups in local communities shows large variations in relation to elevation. While there is, on average, three times more consumers than parasites at low elevation (400–1000 m), this ratio increases to 12 at high elevation (2000–3000 m). This suggests that the decrease in protist host biomass and diversity toward mountains tops impact protist functional composition. Furthermore, the taxonomic composition of protists that infect animals was related to elevation while that of protists that infect plants or of protist consumers was related to soil pH. This study provides a first step to document and understand how soil protist functions vary along the elevational gradient
Strong magneto-optical responses of an ensemble of defect-bound excitons in aged WS and WSe monolayers
Transition metal dichalcogenide (TMD) monolayers present a singular coupling
in their spin and valley degrees of freedom. Moreover, by applying an external
magnetic field it is possible to break the energy degeneracy between their K
and K valleys. Thus, this analogous valley Zeeman effect opens the
possibility of controlling and distinguishing the spin and valley of charge
carriers in TMDs by their optical transition energies, making these materials
promising for the next generation of spintronic and photonic devices. However,
the free excitons of pristine TMD monolayer samples present a moderate valley
Zeeman splitting, which is measured by their g-factor values that are
approximately . Therefore, for application purposes it is mandatory
alternative excitonic states with higher magnetic responses. Here we
investigate the valley Zeeman effect in aged WS and WSe grown
monolayers by magneto-photoluminescence measurements at cryogenic temperatures.
These samples present a lower energy defect-bound exciton emission related to
defects adsorbed during the aging process. While the free excitons of these
samples exhibit g-factors between and , their defect-bound excitons
present giant effective g-factor values of and for WS and WSe aged monolayers, respectively. In addition, we
observe a significant spin polarization of charge carriers in the defective mid
gap states induced by the external magnetic fields. We explain this spin
polarized population in terms of a spin-flip transition mechanism, which is
also responsible for the magnetic dependent light emission of the defect-bound
exciton states. Our work sheds light in the potential of aged TMDs as
candidates for spintronic based devices
- …