641 research outputs found

    Observation of the Kohn anomaly near the K point of bilayer graphene

    Full text link
    The dispersion of electrons and phonons near the K point of bilayer graphene was investigated in a resonant Raman study using different laser excitation energies in the near infrared and visible range. The electronic structure was analyzed within the tight-binding approximation, and the Slonczewski-Weiss-McClure (SWM) parameters were obtained from the analysis of the dispersive behavior of the Raman features. A softening of the phonon branches was observed near the K point, and results evidence the Kohn anomaly and the importance of considering electron-phonon and electron-electron interactions to correctly describe the phonon dispersion in graphene systems.Comment: 4 pages, 4 figure

    Group theory analysis of electrons and phonons in N-layer graphene systems

    Full text link
    In this work we study the symmetry properties of electrons and phonons in graphene systems as function of the number of layers. We derive the selection rules for the electron-radiation and for the electron-phonon interactions at all points in the Brillouin zone. By considering these selection rules, we address the double resonance Raman scattering process. The monolayer and bilayer graphene in the presence of an applied electric field are also discussed.Comment: 8 pages, 6 figure

    Observation of Distinct Electron-Phonon Couplings in Gated Bilayer Graphene

    Full text link
    A Raman study of a back gated bilayer graphene sample is presented. The changes in the Fermi level induced by charge transfer splits the Raman G-band, hardening its higher component and softening the lower one. These two components are associated with the symmetric (S) and anti-symmetric vibration (AS) of the atoms in the two layers, the later one becoming Raman active due to inversion symmetry breaking. The phonon hardening and softening are explained by considering the selective coupling of the S and AS phonons with interband and intraband electron-hole pairs.Comment: 4 pages, 4 figure

    Probing the Electronic Structure of Bilayer Graphene by Raman Scattering

    Full text link
    The electronic structure of bilayer graphene is investigated from a resonant Raman study using different laser excitation energies. The values of the parameters of the Slonczewski-Weiss-McClure model for graphite are measured experimentally and some of them differ significantly from those reported previously for graphite, specially that associated with the difference of the effective mass of electrons and holes. The splitting of the two TO phonon branches in bilayer graphene is also obtained from the experimental data. Our results have implications for bilayer graphene electronic devices.Comment: 4 pages, 4 figure

    Spatial variability in Antarctic surface snow bacterial communities

    Get PDF
    It was once a long-held view that the Antarctic was a pristine environment with low biomass, low biodiversity and low rates of microbial activity. However, as the intensity of scientific investigation has increased, so these views have started to change. In particular, the role and impact of human activity toward indigenous microbial communities has started to come under more intense scrutiny. During the Subglacial Lake Ellsworth exploration campaign in December 2012, a microbiological survey was conducted to determine the extent and likelihood of exogenous input into the subglacial lake system during the hot-water drilling process. Snow was collected from the surface to represent that used for melt water production for hot-water drilling. The results of this study showed that snow used to provide melt water differed in its microbiological composition from that of the surrounding area and raised the question of how the biogeography of snow-borne microorganisms might influence the potential outcome of scientific analyses. In this study, we investigated the biogeography of microorganisms in snow around a series of Antarctic logistic hubs, where human activity was clearly apparent, and from which scientific investigations have been undertaken. A change in microbial community structure with geographical location was apparent and, notably, a decrease in alpha diversity at more remote southern latitudes. Soil-related microorganisms dominated microbial assemblages suggesting terrestrial input, most likely from long-range aeolian transport into continental Antarctica. We also observed that relic DNA was not a major issue when assessing snow samples. Overall, our observations might have profound implications for future scientific activities in Antarctica, such as the need to establish “no-go” protected areas, the need for better characterization of field sites and improved protocols for sterilization and verification of ice drilling equipment

    The electronic properties of bilayer graphene

    Get PDF
    We review the electronic properties of bilayer graphene, beginning with a description of the tight-binding model of bilayer graphene and the derivation of the effective Hamiltonian describing massive chiral quasiparticles in two parabolic bands at low energy. We take into account five tight-binding parameters of the Slonczewski-Weiss-McClure model of bulk graphite plus intra- and interlayer asymmetry between atomic sites which induce band gaps in the low-energy spectrum. The Hartree model of screening and band-gap opening due to interlayer asymmetry in the presence of external gates is presented. The tight-binding model is used to describe optical and transport properties including the integer quantum Hall effect, and we also discuss orbital magnetism, phonons and the influence of strain on electronic properties. We conclude with an overview of electronic interaction effects.Comment: review, 31 pages, 15 figure

    Sine-Gordon Model - Renormalization Group Solutions and Applications

    Full text link
    The sine-Gordon model is discussed and analyzed within the framework of the renormalization group theory. A perturbative renormalization group procedure is carried out through a decomposition of the sine-Gordon field in slow and fast modes. An effective slow modes's theory is derived and re-scaled to obtain the model's flow equations. The resulting Kosterlitz-Thouless phase diagram is obtained and discussed in detail. The theory's gap is estimated in terms of the sine-Gordon model paramaters. The mapping between the sine-Gordon model and models for interacting electrons in one dimension, such as the g-ology model and Hubbard model, is discussed and the previous renormalization group results, obtained for the sine-Gordon model, are thus borrowed to describe different aspects of Luttinger liquid systems, such as the nature of its excitations and phase transitions. The calculations are carried out in a thorough and pedagogical manner, aiming the reader with no previous experience with the sine-Gordon model or the renormalization group approach.Comment: 44 pages, 7 figure

    Soil protist function varies with elevation in the Swiss Alps

    Get PDF
    Protists are abundant and play key trophic functions in soil. Documenting how their trophic contributions vary across large environmental gradients is essential to understand and predict how biogeochemical cycles will be impacted by global changes. Here, using amplicon sequencing of environmental DNA in open habitat soil from 161 locations spanning 2600 m of elevation in the Swiss Alps (from 400 to 3000 m), we found that, over the whole study area, soils are dominated by consumers, followed by parasites and phototrophs. In contrast, the proportion of these groups in local communities shows large variations in relation to elevation. While there is, on average, three times more consumers than parasites at low elevation (400–1000 m), this ratio increases to 12 at high elevation (2000–3000 m). This suggests that the decrease in protist host biomass and diversity toward mountains tops impact protist functional composition. Furthermore, the taxonomic composition of protists that infect animals was related to elevation while that of protists that infect plants or of protist consumers was related to soil pH. This study provides a first step to document and understand how soil protist functions vary along the elevational gradient

    Strong magneto-optical responses of an ensemble of defect-bound excitons in aged WS2_{2} and WSe2_{2} monolayers

    Full text link
    Transition metal dichalcogenide (TMD) monolayers present a singular coupling in their spin and valley degrees of freedom. Moreover, by applying an external magnetic field it is possible to break the energy degeneracy between their K and -K valleys. Thus, this analogous valley Zeeman effect opens the possibility of controlling and distinguishing the spin and valley of charge carriers in TMDs by their optical transition energies, making these materials promising for the next generation of spintronic and photonic devices. However, the free excitons of pristine TMD monolayer samples present a moderate valley Zeeman splitting, which is measured by their g-factor values that are approximately 4-4. Therefore, for application purposes it is mandatory alternative excitonic states with higher magnetic responses. Here we investigate the valley Zeeman effect in aged WS2_{2} and WSe2_{2} grown monolayers by magneto-photoluminescence measurements at cryogenic temperatures. These samples present a lower energy defect-bound exciton emission related to defects adsorbed during the aging process. While the free excitons of these samples exhibit g-factors between 3-3 and 4-4, their defect-bound excitons present giant effective g-factor values of (25.0±0.2)-(25.0 \pm 0.2) and (19.1±0.2)-(19.1 \pm 0.2) for WS2_{2} and WSe2_{2} aged monolayers, respectively. In addition, we observe a significant spin polarization of charge carriers in the defective mid gap states induced by the external magnetic fields. We explain this spin polarized population in terms of a spin-flip transition mechanism, which is also responsible for the magnetic dependent light emission of the defect-bound exciton states. Our work sheds light in the potential of aged TMDs as candidates for spintronic based devices
    corecore