16,112 research outputs found
A low-delay 8 Kb/s backward-adaptive CELP coder
Code excited linear prediction coding is an efficient technique for compressing speech sequences. Communications quality of speech can be obtained at bit rates below 8 Kb/s. However, relatively large coding delays are necessary to buffer the input speech in order to perform the LPC analysis. A low delay 8 Kb/s CELP coder is introduced in which the short term predictor is based on past synthesized speech. A new distortion measure that improves the tracking of the formant filter is discussed. Formal listening tests showed that the performance of the backward adaptive coder is almost as good as the conventional CELP coder
Natural convection heat transfer effects with micro finned structures
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.Micro-scale natural convection plays an important role in heat removal from microelectronic components and Micro-Electro-Mechanical Systems (MEMS) devices. Natural convection of macrofin arrays has been extensively studied by many researchers over the past several decades; however analysis of free convection around microfin arrays is less well researched. The objective of this work was to experimentally investigate the effects of micro fin height and spacing for a horizontally mounted heat sink on heat transfer coefficient when operating under steady state natural convection conditions. An array of micro finned copper heat sinks was fabricated using micro-electro discharge wire machining (μ-EDWM) with fin height ranging from 0.25 to 1.0mm and fin spacing from 0.5 to 1.0mm respectively. Results showed that values of the convective heat transfer coefficient increased with increased fin spacing and decreased as fin height increased.This study is funded by Advantage West Midlands (AWM)
Concept for a large master/slave-controlled robotic hand
A strategy is presented for the design and construction of a large master/slave-controlled, five-finger robotic hand. Each of the five fingers will possess four independent axes each driven by a brushless DC servomotor and, thus, four degrees-of-freedom. It is proposed that commercially available components be utilized as much as possible to fabricate a working laboratory model of the device with an anticipated overall length of two-to-four feet (0.6 to 1.2 m). The fingers are to be designed so that proximity, tactile, or force/torque sensors can be imbedded in their structure. In order to provide for the simultaneous control of the twenty independent hand joints, a multilevel master/slave control strategy is proposed in which the operator wears a specially instrumented glove which produces control signals corresponding to the finger configurations and which is capable of conveying sensor feedback signals to the operator. Two dexterous hand master devices are currently commercially available for this application with both undergoing continuing development. A third approach to be investigated for the master control mode is the use of real-time image processing of a specially patterned master glove to provide the respective control signals for positioning the multiple finger joints
VoroCrust: Voronoi Meshing Without Clipping
Polyhedral meshes are increasingly becoming an attractive option with
particular advantages over traditional meshes for certain applications. What
has been missing is a robust polyhedral meshing algorithm that can handle broad
classes of domains exhibiting arbitrarily curved boundaries and sharp features.
In addition, the power of primal-dual mesh pairs, exemplified by
Voronoi-Delaunay meshes, has been recognized as an important ingredient in
numerous formulations. The VoroCrust algorithm is the first provably-correct
algorithm for conforming polyhedral Voronoi meshing for non-convex and
non-manifold domains with guarantees on the quality of both surface and volume
elements. A robust refinement process estimates a suitable sizing field that
enables the careful placement of Voronoi seeds across the surface circumventing
the need for clipping and avoiding its many drawbacks. The algorithm has the
flexibility of filling the interior by either structured or random samples,
while preserving all sharp features in the output mesh. We demonstrate the
capabilities of the algorithm on a variety of models and compare against
state-of-the-art polyhedral meshing methods based on clipped Voronoi cells
establishing the clear advantage of VoroCrust output.Comment: 18 pages (including appendix), 18 figures. Version without compressed
images available on https://www.dropbox.com/s/qc6sot1gaujundy/VoroCrust.pdf.
Supplemental materials available on
https://www.dropbox.com/s/6p72h1e2ivw6kj3/VoroCrust_supplemental_materials.pd
Long and short paths in uniform random recursive dags
In a uniform random recursive k-dag, there is a root, 0, and each node in
turn, from 1 to n, chooses k uniform random parents from among the nodes of
smaller index. If S_n is the shortest path distance from node n to the root,
then we determine the constant \sigma such that S_n/log(n) tends to \sigma in
probability as n tends to infinity. We also show that max_{1 \le i \le n}
S_i/log(n) tends to \sigma in probability.Comment: 16 page
Neuropilins 1 and 2 mediate neointimal hyperplasia and re-endothelialization following arterial injury
AIMS: Neuropilins 1 and 2 (NRP1 and NRP2) play crucial roles in endothelial cell migration contributing to angiogenesis and vascular development. Both NRPs are also expressed by cultured vascular smooth muscle cells (VSMCs) and are implicated in VSMC migration stimulated by PDGF-BB, but it is unknown whether NRPs are relevant for VSMC function in vivo. We investigated the role of NRPs in the rat carotid balloon injury model, in which endothelial denudation and arterial stretch induce neointimal hyperplasia involving VSMC migration and proliferation. METHODS AND RESULTS: NRP1 and NRP2 mRNAs and proteins increased significantly following arterial injury, and immunofluorescent staining revealed neointimal NRP expression. Down-regulation of NRP1 and NRP2 using shRNA significantly reduced neointimal hyperplasia following injury. Furthermore, inhibition of NRP1 by adenovirally overexpressing a loss-of-function NRP1 mutant lacking the cytoplasmic domain (ΔC) reduced neointimal hyperplasia, whereas wild-type (WT) NRP1 had no effect. NRP-targeted shRNAs impaired, while overexpression of NRP1 WT and NRP1 ΔC enhanced, arterial re-endothelialization 14 days after injury. Knockdown of either NRP1 or NRP2 inhibited PDGF-BB-induced rat VSMC migration, whereas knockdown of NRP2, but not NRP1, reduced proliferation of cultured rat VSMC and neointimal VSMC in vivo. NRP knockdown also reduced the phosphorylation of PDGFα and PDGFβ receptors in rat VSMC, which mediate VSMC migration and proliferation. CONCLUSION: NRP1 and NRP2 play important roles in the regulation of neointimal hyperplasia in vivo by modulating VSMC migration (via NRP1 and NRP2) and proliferation (via NRP2), independently of the role of NRPs in re-endothelialization
Level-crossing rate and average duration of fades for mobile radio channel with hyperbolically distributed scatterers
In this paper we study the geometrical and time-variant wireless vector channel model with hyperbolically distributed scatterers for a macrocell mobile environment. In this study we investigate the level-crossing rate (LCR), the average duration of fades (ADF), the probability density function (PDF), the cumulative distribution function (CDF) and the autocorrelation functions (ACF) of this recently-proposed model. The simulated results are verified against the analytical Clarke's channel model. In this paper we study the geometrical and time-variant wireless vector channel model with hyperbolically distributed scatterers for a macrocell mobile environment. In this study we investigate the level-crossing rate (LCR), the average duration of fades (ADF), the probability density function (PDF), the cumulative distribution function (CDF) and the autocorrelation functions (ACF) of this recently-proposed model. The simulated results are verified against the analytical Clarke's channel model
Nano-Size Layered Manganese-Calcium Oxide as an Efficient and Biomimetic Catalyst for Water Oxidation Under Acidic Conditions: Comparable To Platinum
Inspired by Nature's catalyst, a nano-size layered manganese-calcium oxide showed a low overvoltage for water oxidation in acidic solutions, which is comparable to platinum.Institute for Advanced Studies in Basic Sciences and the National Elite FoundationUS Department of Energy, Office of Basic Energy Sciences, Division of Chemical, Geochemical and Biological Sciences DE-FG02-86ER13622, DE-FG0209ER16119Russian Foundation for Basic Research 11-04-01389a, 12-0492101a, 13-04-92711aMolecular and Cell Biology Programs of the Russian Academy of SciencesCenter for Electrochemistr
- …
