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Abstract— In this paper we study the geometrical and time-
variant wireless vector channel model with hyperbolically dis-
tributed scatterers for a macrocell mobile environment. In this
study we investigate the level-crossing rate (LCR), the average
duration of fades (ADF), the probability density function (PDF),
the cumulative distribution function (CDF) and the autocorrela-
tion functions (ACF) of this recently-proposed model. The simu-
lated results are verified against the analytical Clarke’s channel
model.In this paper we study the geometrical and time-variant
wireless vector channel model with hyperbolically distributed
scatterers for a macrocell mobile environment. In this study we
investigate the level-crossing rate (LCR), the average duration
of fades (ADF), the probability density function (PDF), the
cumulative distribution function (CDF) and the autocorrelation
functions (ACF) of this recently-proposed model. The simulated
results are verified against the analytical Clarke’s channel model.

I. INTRODUCTION

All relevant components of a mobile radio system, from
digital modulation techniques over channel coding through to
network aspects, are determined by the propagation character-
istics of the channel. Therefore, a precise knowledge of mobile
radio channels is crucial for the development, evaluation
and test of current and future mobile radio communication
systems.[1]

From the designers’s viewpoint, simulation models for fad-
ing channels are extremely important for the development, per-
formance analysis, and test of modern wireless communication
systems. The designed fading channel simulator should fit the
desired statistical behavior with high precision before analyz-
ing the performance of a new mobile communication system.
Accuracy, efficiency, flexibility and ease of implementation
are the challenging requirements in designing the simulation
models [2].

The characteristic quantities describing the statistics of mo-
bile fading channels are the probability density function (PDF),
cumulative distribution function (CDF), the autocorrelation
function (ACF), the level-crossing rate (LCR) and the average
duration of fades (ADF). The level-crossing rate (LCR) and
average duration of fades (ADF) are useful for designing error
control codes and diversity schemes to be used in mobile
communication systems, since it becomes possible to relate

the time rate of change of the received signal to the signal
level and velocity of the mobile [3].

In [4], a space-time geometrical based hyperbolically dis-
tributed scatterers (GBHDS) model for a macrocell mobile
environment was proposed. The combination of stochastic and
geometrical assumptions results in a mathematically tractable
and computationally efficient channel model. This model pro-
vides the power of each path, the time-of-arrival (TOA), and
the direction-of-arrival (DOA) of the multipath component as
well as the fading effect. The model enables the simulation
of downlink beamforming as well as space diversity concepts
and handles both spatially narrowband and wideband signals.

Verification of this newly proposed GBHDS model against
the analytic fading channel model is thus necessary and a
detailed analysis of the statistical characteristics of this new
model is given.

The aim of this work is to study the GBHDS model and
to analyze the LCR and ADF of this simulation model for
Rayleigh fading channels. We first describe in Section II the
stochastic reference model for the Rayleigh fading channel. In
Section III, we briefly present the GBHDS model. Section IV
presents the simulation results of the GBHDS simulator and
the analysis of its statistical characteristics. The simulation
results are compared with analytic results.

II. DESCRIPTION OF THE ANALYTICAL MODEL

The detailed derivation of Jakes Power spectral density or
Clarke power spectral density can be found in [5]. We here
review this derivation briefly and give some initial simulation
results.

To derive the Jakes power spectral density, we follow these
assumptions [1]:

1) The propagation of the electromagnetic waves takes
place in the two-dimensional(horizontal) plane, and the
receiver is located in the center of an isotropic scattering
area.

2) The angles of arrival α of the waves arriving the re-
ceiving antenna are uniformly distributed in the interval
[−π, π).
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3) The antenna radiation pattern of the receiving antenna
is circular-symmetrical (omnidirectional antenna).

The probability density function of the angles of arrival α
is thus given by

pα =
{

1
2π , α ∈ [−π, π),
0, elsewhere. (1)

The Doppler frequencies can then be defined by

f = f(α) := fm cos(α), (2)

where fm is the maximal Doppler frequency. Obviously f is
also a random variable. The probability density function of the
Doppler frequencies f , denoted by pf (f), can be given by [5]

pf (f) =

{
1

πfm

√
1−(f/fm)2

, |f | ≤ fm,

0, |f | > fm.
(3)

This function of random variables is simulated and shown in
Fig. 1 with fm = 20 Hz.

The power spectral density Sµµ(f) of the scattered compo-
nents µ(t) = µ1(t)+jµ2(t), received at the receiving antenna,
is obviously proportional to pf (f) of the Doppler frequencies.
The following relation holds:

Sµµ(f)df ∼ pf (f)df, (4)

The relation between the probability density function and the
power spectrum density is thus established. Further investiga-
tion which takes Eq.(3) into account will lead into the Jakes
Power spectral density or Clarke power spectral density:

Sµµ(f) =

{
2σ2

0

πfm

√
1−(f/fm)2

, |f | ≤ fm,

0, |f | > fm.
(5)

where
∫ ∞
−∞ Suu(f)df = 2σ2

0 , and 2σ2
0 is the power of the

scattered components µ(t) = µ1(t) + jµ2(t).
The autocorrelation function (ACF) rµµ(τ) of the scattered

component µ(t) = µ1(t) + jµ2(t) can be obtained by taking
the inverse Fourier transform of the Jakes power spectral
density of Eq.(5):

rµµ(τ) = 2σ2
0J0(2πfmτ) (6)

where J0(·) is the zeroth-order Bessel function of the first
kind.

III. THE GBHDS CHANNEL MODEL

In this section we provide a general description for the
space-time geometrical-based hyperbolically distributed scat-
terers (GBHDS) model [6]. This model combined a scalar
stochastic fading model for the local scatterers with the
geometrical hyperbolic model proposed in [7], [8] for the
distribution of the dominant scatterers. The model in [6]
assumes that the scatterers are arranged circularly around
the mobile, with the distances between 1) the mobile and
the local scatterers and 2) the local and dominant scatterers,
both being distributed hyperbolically according to an inverse-
cosh-squared distribution. This model provides directional
information as well as concerning with mobility issue. Fig.

2 shows the geometry for the GBHDS model. The angle of
departure ψlk is uniformly distributed in the interval [0,2π].
The angle θlk is the direction of arrival at the base station,
while D denotes the distance between the base station and the
mobile station. The mobile is located at the origin. This model
has the following assumptions [6]

• The scatterers were arranged circularly around the mo-
bile, with the distance between the mobile and the local
scatterers rlk and the distance between the local and dom-
inant scatterers Rlk are both distributed hyperbolically.

• Signals received at the base station are plane waves
propagating along the horizon ( there is no vertical
component to the signal propagation).

• Scatterers are omnidirectional re-radiating elements.
• The scatterers have identical scattering coefficients.
• The macrocell antenna heights are relatively high and

there is no signal scattering from locations near the base
station.

The probability density functions (pdf) of the distances rlk
and Rlk for the kth user in multiuser environment are given
by [6]

frlk
(rlk) =

a1

tanh(a1Rls) cosh 2(a1 rlk)
0 ≤ rlk ≤ Rls (7)

and

fRlk
(Rlk) =

a2

tanh(a2Rds) cosh 2(a2Rlk)
0 ≤ Rlk ≤ Rds (8)

and
where Rls is the radius of the circle enclosing the local

scatterers, and Rds is the radius of the dominant scatterers
circle. The applicable values of a1 and a2 lie in the interval
(0,1). From the spatial probability density functions of the
scatterers in (7) and (8) we can determine the the DOA,
TOA, and the signal amplitude. A comprehensive study of
these models (at theoretical and simulation levels) as well as
their validation with practical data have been considered. They
proved to be more realistic than other models in the literature
when tested against practical data [8], [9].

IV. STATISTICAL PROPERTIES OF THE GBHDS CHANNEL

MODEL

To verify the statistical properties of the GBHDS channel,
we first plot the envelope of the Rayleigh process µ(t), shown
in Fig. 3. The elementary properties of µ(t) such as the
the PDF, CDF and the phase of the Rayleigh process µ(t)
are plotted in Fig.4. We simulated µ(kT ) with a sampling
interval of T = 0.5 × 10−4s and sample number of 8000.
The remaining model parameters were maximum doppler
frequency fm = 80 Hz, the carrier frequency fc = 900 MHz.
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Fig. 1. Histogram of the angles of arrival α and the pdf of the
Doppler frequencies f .

The autocorrelation (ACF) is also plotted in Fig.5 for the
purpose of verification.

Fig. 2. Geometry of the space-time hyperbolic model.

Apart from the probability density function, the cumulative
distribution function, the autocorrelation function, and the
knowledge of other statistical quantities that characterize the
mobile fading channels like level crossing rate (LCR) and
average duration of fades (ADF), is of special interest as it
relates the time rate of change of the received signal to the
signal level and velocity of the mobile

The level crossing rate, NR, is defined as the expected rate
at which the envelope crosses a specified signal level, R, in
the positive direction. In general, it is given by [10]

NR =
∫ ∞

0

ṙp(R, ṙ)dṙ =
√

2πfmρe
−ρ2

, (9)

where the dot indicates the time derivative and p(R, ṙ) is the
joint density function of r and ṙ at r = R. And ρ = R/Rrms
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Fig. 3. The Rayleigh envelope of the simulated GBHDS channel.
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Fig. 4. The PDF and CDF of µ(t), and the histogram of the fading
phase.

is the value of the specified level R, normalized to the local
rms amplitude of the fading envelope. Fig. 6 shows that
the GBHDS model give satisfactory results which are close
enough to the ideal curve.

The average duration of fades, τ̄ , is defined as the average
period of time for which the received signal is below a
specified level R. Let τi be the duration of the ith fade, then
the average duration of fade for a total time interval of length T
is τ̄ =

∑
τi/(NRT ). Like level crossing rate NR, the average

duration of fade can be also expressed as a function of ρ and
fm as [10]

τ̄ =
eρ2−1

ρfm

√
2π

(10)

Fig. 7 shows the simulated average duration of fade for the
above mentioned parameters with the theoretical curve. Again,
the simulated curve gives satisfactory results which are close
enough to the ideal curve.
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Fig. 5. The ACF of the reference model and the simulation model.
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Fig. 6. Normalized level crossing rates of the envelopes.

V. CONCLUSIONS

In this paper, we investigate the GBHDS model’s amplitude
and phase probability density function (pdf), also the higher-
order statistics such as the level crossing rate (LCR) and the
average duration of fades (ADF) for the verification against
the analytical model. Simulation results show that the sim-
ulator of the GBHDS model accurately reproduces all of the
important statistical properties. This provides more supports to
the GBHDS model and will be useful for simulating practical
channels, such as MIMO channels, and space-time-selective
mobile fading channels due to the structure of the GBHDS
model.

REFERENCES

[1] M. Patzold, Mobile Fading Channels, John Wiley and Sons,
2002.

−40 −35 −30 −25 −20 −15 −10 −5 0 5 10
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

ρ=20log10(R/Rrms),dB

τ av
e 

f m

 Ideal
Simulation

Fig. 7. Normalized durations of fade of the envelopes.

[2] M. Patzold and F. Laue, “Level-Crossing Rate and Average
Duration of Fades of Deterministic Simulation Models for Rice
Fading Channels,” IEEE Trans. Vehicular Technology, vol. 48,
no. 4, pp. 1121-1129, July. 1999.

[3] T. S. Rappaport, Wireless Communications, Principles and Prac-
tice, Prentice Hall, 2002, 2nd ed.

[4] S. S. Mahmoud, Z. M. Hussain, and P. O’Shea, “A Space-
Time Model for Mobile Radio Channel With Hyperbolically
Distributed Scatters,” IEEE Antennas and Wireless Propagation
Letters, vol. 1, pp. 211-214, 2002.

[5] R. H. Clarke, “A Statistical Theory of Mobile-Radio Reception,”
Bell Systems Technical Journal, vol. 47, pp. 957-1000, 1968.

[6] Seedahmed S. Mahmoud, Zahir M. Hussain, and Peter O’Shea,
“Space-time model for mobile radio channel with hyperbolically
distributed scatterers,” IEEE Antennas and Wireless Propaga-
tion Letters, vol. 1, no. 12, pp. 211-214, 2002.

[7] ——–, “Geometrical model for mobile radio channel with
hyperbolically distributed scatterers,” The 8th IEEE Interna-
tional Conference on Communications Systems, vol. 1, pp. 17-
20, Singapore, Nov. 2002.

[8] ——–, “A Geometrical-Based Channel Model with Hyperboli-
cally Distributed Scatterers for a Macrocell Mobile Environment
with Antenna Array,” Multimedia Cyberscape Journal, vol. 2,
pp.1-10, 2004.

[9] ——–, “Spatial and Temporal Statistics for the Geometrical-
Based Hyperbolic Macrocell Channel Model,” Submitted to
IEEE Transactions on Vehicular Technology.

[10] W. C. Jakes, Microwave Mobile Communications, Wiley, New
York, 1974.

211

Authorized licensed use limited to: RMIT University. Downloaded on November 27, 2008 at 22:09 from IEEE Xplore.  Restrictions apply.


