7,306 research outputs found

    Single production of new gauge bosons from the littlest Higgs model at the TeVTeV energy eγe^{-}\gamma colliders

    Full text link
    In the context of the littlest Higgs(LH) model, we study single production of the new gauge bosons BHB_{H}, ZHZ_{H} and WH±W_{H}^{\pm} via eγe^{-}\gamma collisions and discuss the possibility of detecting these new particles in the TeVTeV energy e+ee^{+}e^{-} collider(LCLC). We find that these new particles can not be detected via the eννe^{-}\nu\nu signal in all of the parameter space preferred by the electroweak precision data. However, the heavy gauge bosons BHB_{H} and ZHZ_{H} may be observed via the decay channel BH(ZH)l+lB_{H}(Z_{H})\to l^{+}l^{-} in wide range of the parameter space.Comment: references added, typos corrected. To be published in Phys. Rev.

    Gravity in Dynamically Generated Dimensions

    Get PDF
    A theory of gravity in d+1d+1 dimensions is dynamically generated from a theory in dd dimensions. As an application we show how NN dynamically coupled gravity theories can reduce the effective Planck mass.Comment: 7 pages, LaTeX (Revtex

    Massive Gravity on a Brane

    Get PDF
    At present no theory of a massive graviton is known that is consistent with experiments at both long and short distances. The problem is that consistency with long distance experiments requires the graviton mass to be very small. Such a small graviton mass however implies an ultraviolet cutoff for the theory at length scales far larger than the millimeter scale at which gravity has already been measured. In this paper we attempt to construct a model which avoids this problem. We consider a brane world setup in warped AdS spacetime and we investigate the consequences of writing a mass term for the graviton on a the infrared brane where the local cutoff is of order a large (galactic) distance scale. The advantage of this setup is that the low cutoff for physics on the infrared brane does not significantly affect the predictivity of the theory for observers localized on the ultraviolet brane. For such observers the predictions of this theory agree with general relativity at distances smaller than the infrared scale but go over to those of a theory of massive gravity at longer distances. A careful analysis of the graviton two-point function, however, reveals the presence of a ghost in the low energy spectrum. A mode decomposition of the higher dimensional theory reveals that the ghost corresponds to the radion field. We also investigate the theory with a brane localized mass for the graviton on the ultraviolet brane, and show that the physics of this case is similar to that of a conventional four dimensional theory with a massive graviton, but with one important difference: when the infrared brane decouples and the would-be massive graviton gets heavier than the regular Kaluza--Klein modes, it becomes unstable and it has a finite width to decay off the brane into the continuum of Kaluza-Klein states.Comment: 26 pages, LaTeX. v2: extended version with an appendix added about non Fierz-Pauli mass terms. Few typos corrected. Final version appeared in PR

    Amplituhedron meets Jeffrey-Kirwan Residue

    Get PDF
    The tree amplituhedra A^(m)_n,k are mathematical objects generalising the notion of polytopes into the Grassmannian. Proposed for m=4 as a geometric construction encoding tree-level scattering amplitudes in planar N=4 super Yang-Mills theory, they are mathematically interesting for any m. In this paper we strengthen the relation between scattering amplitudes and geometry by linking the amplituhedron to the Jeffrey-Kirwan residue, a powerful concept in symplectic and algebraic geometry. We focus on a particular class of amplituhedra in any dimension, namely cyclic polytopes, and their even-dimensional conjugates. We show how the Jeffrey-Kirwan residue prescription allows to extract the correct amplituhedron volume functions in all these cases. Notably, this also naturally exposes the rich combinatorial and geometric structures of amplituhedra, such as their regular triangulations.Peer reviewedFinal Accepted Versio

    A Grassmannian Etude in NMHV Minors

    Full text link
    Arkani-Hamed, Cachazo, Cheung and Kaplan have proposed a Grassmannian formulation for the S-matrix of N=4 Yang-Mills as an integral over link variables. In parallel work, the connected prescription for computing tree amplitudes in Witten's twistor string theory has also been written in terms of link variables. In this paper we extend the six- and seven-point results of arXiv:0909.0229 and arXiv:0909.0499 by providing a simple analytic proof of the equivalence between the two formulas for all tree-level NMHV superamplitudes. Also we note that a simple deformation of the connected prescription integrand gives directly the ACCK Grassmannian integrand in the limit when the deformation parameters equal zero.Comment: 17 page

    Discrete Symmetries and Localization in a Brane-world

    Get PDF
    Discrete symmetries are studied in warped space-times with one extra dimension. In particular, we analyze the compatibility of five- and four-dimensional charge conjugation, parity, time reversal and the orbifold symmetry Z_2 with localization of fermions on the four-dimensional brane-world and Lorentz invariance. We then show that, when a suitable topological scalar field (the ``kink'') is included, fermion localization is a consequence of (five-dimensional) CPT invariance.Comment: REVTeX, 8 pages, 1 EPS figure include

    Anomalies in orbifold field theories

    Get PDF
    We study the constraints on models with extra dimensions arising from local anomaly cancellation. We consider a five-dimensional field theory with a U(1) gauge field and a charged fermion, compactified on the orbifold S^1/(Z_2 x Z_2'). We show that, even if the orbifold projections remove both fermionic zero modes, there are gauge anomalies localized at the fixed points. Anomalies naively cancel after integration over the fifth dimension, but gauge invariance is broken, spoiling the consistency of the theory. We discuss the implications for realistic supersymmetric models with a single Higgs hypermultiplet in the bulk, and possible cancellation mechanisms in non-minimal models.Comment: 10 pages, 2 figures, LaTex; v2: final version to be published in Phys. Lett.

    Little Technicolor

    Full text link
    Inspired by the AdS/CFT correspondence, we show that any G/H symmetry breaking pattern can be described by a simple two-site moose diagram. This construction trivially reproduces the CCWZ prescription in the context of Hidden Local Symmetry. We interpret this moose in a novel way to show that many little Higgs theories can emerge from ordinary chiral symmetry breaking in scaled-up QCD. We apply this reasoning to the simple group little Higgs to see that the same low energy degrees of freedom can arise from a variety of UV complete theories. We also show how models of holographic composite Higgs bosons can turn into brane-localized little technicolor theories by "integrating in" the IR brane.Comment: 26 pages, 2 figures; v2: references added; v3: added section on vacuum alignment to match JHEP versio

    Exponentially Small Supersymmetry Breaking from Extra Dimensions

    Full text link
    The supersymmetric ``shining'' of free massive chiral superfields in extra dimensions from a distant source brane can trigger exponentially small supersymmetry breaking on our brane of order e^{-2 pi R}, where R is the radius of the extra dimensions. This supersymmetry breaking can be transmitted to the superpartners in a number of ways, for instance by gravity or via the standard model gauge interactions. The radius R can easily be stabilized at a size O(10) larger that the fundamental scale. The models are extremely simple, relying only on free, classical bulk dynamics to solve the hierarchy problem.Comment: RevTex, 1 figure. Comment on mu problem adde

    Tree-level scattering amplitudes from the amplituhedron

    Get PDF
    7 pages, 2 figures, to be published in the Journal of Physics: Conference Series. Proceedings for the "7th Young Researcher Meeting", Torino, 2016A central problem in quantum field theory is the computation of scattering amplitudes. However, traditional methods are impractical to calculate high order phenomenologically relevant observables. Building on a few decades of astonishing progress in developing non-standard computational techniques, it has been recently conjectured that amplitudes in planar N=4 super Yang-Mills are given by the volume of the (dual) amplituhedron. After providing an introduction to the subject at tree-level, we discuss a special class of differential equations obeyed by the corresponding volume forms. In particular, we show how they fix completely the amplituhedron volume for next-to-maximally helicity violating scattering amplitudes.Peer reviewe
    corecore