7,306 research outputs found
Single production of new gauge bosons from the littlest Higgs model at the energy colliders
In the context of the littlest Higgs(LH) model, we study single production of
the new gauge bosons , and via
collisions and discuss the possibility of detecting these new particles in the
energy collider(). We find that these new particles can
not be detected via the signal in all of the parameter space
preferred by the electroweak precision data. However, the heavy gauge bosons
and may be observed via the decay channel in wide range of the parameter space.Comment: references added, typos corrected. To be published in Phys. Rev.
Gravity in Dynamically Generated Dimensions
A theory of gravity in dimensions is dynamically generated from a
theory in dimensions. As an application we show how dynamically coupled
gravity theories can reduce the effective Planck mass.Comment: 7 pages, LaTeX (Revtex
Massive Gravity on a Brane
At present no theory of a massive graviton is known that is consistent with
experiments at both long and short distances. The problem is that consistency
with long distance experiments requires the graviton mass to be very small.
Such a small graviton mass however implies an ultraviolet cutoff for the theory
at length scales far larger than the millimeter scale at which gravity has
already been measured. In this paper we attempt to construct a model which
avoids this problem. We consider a brane world setup in warped AdS spacetime
and we investigate the consequences of writing a mass term for the graviton on
a the infrared brane where the local cutoff is of order a large (galactic)
distance scale. The advantage of this setup is that the low cutoff for physics
on the infrared brane does not significantly affect the predictivity of the
theory for observers localized on the ultraviolet brane. For such observers the
predictions of this theory agree with general relativity at distances smaller
than the infrared scale but go over to those of a theory of massive gravity at
longer distances. A careful analysis of the graviton two-point function,
however, reveals the presence of a ghost in the low energy spectrum. A mode
decomposition of the higher dimensional theory reveals that the ghost
corresponds to the radion field. We also investigate the theory with a brane
localized mass for the graviton on the ultraviolet brane, and show that the
physics of this case is similar to that of a conventional four dimensional
theory with a massive graviton, but with one important difference: when the
infrared brane decouples and the would-be massive graviton gets heavier than
the regular Kaluza--Klein modes, it becomes unstable and it has a finite width
to decay off the brane into the continuum of Kaluza-Klein states.Comment: 26 pages, LaTeX. v2: extended version with an appendix added about
non Fierz-Pauli mass terms. Few typos corrected. Final version appeared in
PR
Amplituhedron meets Jeffrey-Kirwan Residue
The tree amplituhedra A^(m)_n,k are mathematical objects generalising the notion of polytopes into the Grassmannian. Proposed for m=4 as a geometric construction encoding tree-level scattering amplitudes in planar N=4 super Yang-Mills theory, they are mathematically interesting for any m. In this paper we strengthen the relation between scattering amplitudes and geometry by linking the amplituhedron to the Jeffrey-Kirwan residue, a powerful concept in symplectic and algebraic geometry. We focus on a particular class of amplituhedra in any dimension, namely cyclic polytopes, and their even-dimensional conjugates. We show how the Jeffrey-Kirwan residue prescription allows to extract the correct amplituhedron volume functions in all these cases. Notably, this also naturally exposes the rich combinatorial and geometric structures of amplituhedra, such as their regular triangulations.Peer reviewedFinal Accepted Versio
A Grassmannian Etude in NMHV Minors
Arkani-Hamed, Cachazo, Cheung and Kaplan have proposed a Grassmannian
formulation for the S-matrix of N=4 Yang-Mills as an integral over link
variables. In parallel work, the connected prescription for computing tree
amplitudes in Witten's twistor string theory has also been written in terms of
link variables. In this paper we extend the six- and seven-point results of
arXiv:0909.0229 and arXiv:0909.0499 by providing a simple analytic proof of the
equivalence between the two formulas for all tree-level NMHV superamplitudes.
Also we note that a simple deformation of the connected prescription integrand
gives directly the ACCK Grassmannian integrand in the limit when the
deformation parameters equal zero.Comment: 17 page
Discrete Symmetries and Localization in a Brane-world
Discrete symmetries are studied in warped space-times with one extra
dimension. In particular, we analyze the compatibility of five- and
four-dimensional charge conjugation, parity, time reversal and the orbifold
symmetry Z_2 with localization of fermions on the four-dimensional brane-world
and Lorentz invariance. We then show that, when a suitable topological scalar
field (the ``kink'') is included, fermion localization is a consequence of
(five-dimensional) CPT invariance.Comment: REVTeX, 8 pages, 1 EPS figure include
Anomalies in orbifold field theories
We study the constraints on models with extra dimensions arising from local
anomaly cancellation. We consider a five-dimensional field theory with a U(1)
gauge field and a charged fermion, compactified on the orbifold S^1/(Z_2 x
Z_2'). We show that, even if the orbifold projections remove both fermionic
zero modes, there are gauge anomalies localized at the fixed points. Anomalies
naively cancel after integration over the fifth dimension, but gauge invariance
is broken, spoiling the consistency of the theory. We discuss the implications
for realistic supersymmetric models with a single Higgs hypermultiplet in the
bulk, and possible cancellation mechanisms in non-minimal models.Comment: 10 pages, 2 figures, LaTex; v2: final version to be published in
Phys. Lett.
Little Technicolor
Inspired by the AdS/CFT correspondence, we show that any G/H symmetry
breaking pattern can be described by a simple two-site moose diagram. This
construction trivially reproduces the CCWZ prescription in the context of
Hidden Local Symmetry. We interpret this moose in a novel way to show that many
little Higgs theories can emerge from ordinary chiral symmetry breaking in
scaled-up QCD. We apply this reasoning to the simple group little Higgs to see
that the same low energy degrees of freedom can arise from a variety of UV
complete theories. We also show how models of holographic composite Higgs
bosons can turn into brane-localized little technicolor theories by
"integrating in" the IR brane.Comment: 26 pages, 2 figures; v2: references added; v3: added section on
vacuum alignment to match JHEP versio
Exponentially Small Supersymmetry Breaking from Extra Dimensions
The supersymmetric ``shining'' of free massive chiral superfields in extra
dimensions from a distant source brane can trigger exponentially small
supersymmetry breaking on our brane of order e^{-2 pi R}, where R is the radius
of the extra dimensions. This supersymmetry breaking can be transmitted to the
superpartners in a number of ways, for instance by gravity or via the standard
model gauge interactions. The radius R can easily be stabilized at a size O(10)
larger that the fundamental scale. The models are extremely simple, relying
only on free, classical bulk dynamics to solve the hierarchy problem.Comment: RevTex, 1 figure. Comment on mu problem adde
Tree-level scattering amplitudes from the amplituhedron
7 pages, 2 figures, to be published in the Journal of Physics: Conference Series. Proceedings for the "7th Young Researcher Meeting", Torino, 2016A central problem in quantum field theory is the computation of scattering amplitudes. However, traditional methods are impractical to calculate high order phenomenologically relevant observables. Building on a few decades of astonishing progress in developing non-standard computational techniques, it has been recently conjectured that amplitudes in planar N=4 super Yang-Mills are given by the volume of the (dual) amplituhedron. After providing an introduction to the subject at tree-level, we discuss a special class of differential equations obeyed by the corresponding volume forms. In particular, we show how they fix completely the amplituhedron volume for next-to-maximally helicity violating scattering amplitudes.Peer reviewe
- …