7,838 research outputs found
Immunolocalization of KATP channel subunits in mouse and rat cardiac myocytes and the coronary vasculature.
BACKGROUND: Electrophysiological data suggest that cardiac KATP channels consist of Kir6.2 and SUR2A subunits, but the distribution of these (and other KATP channel subunits) is poorly defined. We examined the localization of each of the KATP channel subunits in the mouse and rat heart. RESULTS: Immunohistochemistry of cardiac cryosections demonstrate Kir6.1 protein to be expressed in ventricular myocytes, as well as in the smooth muscle and endothelial cells of coronary resistance vessels. Endothelial capillaries also stained positive for Kir6.1 protein. Kir6.2 protein expression was found predominantly in ventricular myocytes and also in endothelial cells, but not in smooth muscle cells. SUR1 subunits are strongly expressed at the sarcolemmal surface of ventricular myocytes (but not in the coronary vasculature), whereas SUR2 protein was found to be localized predominantly in cardiac myocytes and coronary vessels (mostly in smaller vessels). Immunocytochemistry of isolated ventricular myocytes shows co-localization of Kir6.2 and SUR2 proteins in a striated sarcomeric pattern, suggesting t-tubular expression of these proteins. Both Kir6.1 and SUR1 subunits were found to express strongly at the sarcolemma. The role(s) of these subunits in cardiomyocytes remain to be defined and may require a reassessment of the molecular nature of ventricular KATP channels. CONCLUSIONS: Collectively, our data demonstrate unique cellular and subcellular KATP channel subunit expression patterns in the heart. These results suggest distinct roles for KATP channel subunits in diverse cardiac structures
Linguistic Structure Guided Context Modeling for Referring Image Segmentation
Referring image segmentation aims to predict the foreground mask of the
object referred by a natural language sentence. Multimodal context of the
sentence is crucial to distinguish the referent from the background. Existing
methods either insufficiently or redundantly model the multimodal context. To
tackle this problem, we propose a "gather-propagate-distribute" scheme to model
multimodal context by cross-modal interaction and implement this scheme as a
novel Linguistic Structure guided Context Modeling (LSCM) module. Our LSCM
module builds a Dependency Parsing Tree suppressed Word Graph (DPT-WG) which
guides all the words to include valid multimodal context of the sentence while
excluding disturbing ones through three steps over the multimodal feature,
i.e., gathering, constrained propagation and distributing. Extensive
experiments on four benchmarks demonstrate that our method outperforms all the
previous state-of-the-arts.Comment: Accepted by ECCV 2020. Code is available at
https://github.com/spyflying/LSCM-Refse
Small poly-L-lysines improve cationic lipid-mediated gene transfer in vascular cells in vitro and in vivo
The potential of two small poly-L-lysines ( sPLLs), low molecular weight sPLL ( LMW-L) containing 7 - 30 lysine residues and L18 with 18 lysine repeats, to enhance the efficiency of liposome-mediated gene transfer ( GT) with cationic lipid DOCSPER {[}1,3- dioleoyloxy- 2-( N-5-carbamoyl-spermine)-propane] in vascular smooth muscle cells ( SMCs) was investigated. Dynamic light scattering was used for determination of particle size. Confocal microscopy was applied for colocalization studies of sPLLs and plasmid DNA inside cells. GT was performed in proliferating and quiescent primary porcine SMCs in vitro and in vivo in porcine femoral arteries. At low ionic strength, sPLLs formed small complexes with DNA ( 50 100 nm). At high ionic strength, large complexes ( 11 mu m) were observed without any significant differences in particle size between lipoplexes ( DOCSPER/ DNA) and lipopolyplexes ( DOCSPER/ sPLL/ DNA). Both sPLLs were colocalized with DNA inside cells 24 h after transfection, protecting DNA against degradation. DOCSPER/ sPLL/ DNA formulations enhanced GT in vitro up to 5- fold, in a porcine model using local periadventitial application up to 1.5- fold. Both sPLLs significantly increased liposome- mediated GT. Poly-L-lysine L18 was superior to LMW-L since it enabled maximal GT at a 10-fold lower concentration. Thus, sPLLs may serve as enhancers for GT applications in SMCs in vitro and in vivo using local delivery. Copyright (c) 2007 S. Karger AG, Basel
Cellular Skeletons: A New Approach to Topological Skeletons with Geometric Features
This paper introduces a new kind of skeleton for binary volumes called the cellular skeleton. This skeleton is not a subset of voxels of a volume nor a subcomplex of a cubical complex: it is a chain complex together with a reduction from the original complex.
Starting from the binary volume we build a cubical complex which represents it regarding 6 or 26-connectivity. Then the complex is thinned using the proposed method based on elementary collapses, which preserves significant geometric features. The final step reduces the number of cells using Discrete Morse Theory. The resulting skeleton is a reduction which preserves the homology of the original complex and the geometrical information of the output of the previous step.
The result of this method, besides its skeletonization content, can be used for computing the homology of the original complex, which usually provides well shaped homology generators
Binary pattern tile set synthesis is NP-hard
In the field of algorithmic self-assembly, a long-standing unproven
conjecture has been that of the NP-hardness of binary pattern tile set
synthesis (2-PATS). The -PATS problem is that of designing a tile assembly
system with the smallest number of tile types which will self-assemble an input
pattern of colors. Of both theoretical and practical significance, -PATS
has been studied in a series of papers which have shown -PATS to be NP-hard
for , , and then . In this paper, we close the
fundamental conjecture that 2-PATS is NP-hard, concluding this line of study.
While most of our proof relies on standard mathematical proof techniques, one
crucial lemma makes use of a computer-assisted proof, which is a relatively
novel but increasingly utilized paradigm for deriving proofs for complex
mathematical problems. This tool is especially powerful for attacking
combinatorial problems, as exemplified by the proof of the four color theorem
by Appel and Haken (simplified later by Robertson, Sanders, Seymour, and
Thomas) or the recent important advance on the Erd\H{o}s discrepancy problem by
Konev and Lisitsa using computer programs. We utilize a massively parallel
algorithm and thus turn an otherwise intractable portion of our proof into a
program which requires approximately a year of computation time, bringing the
use of computer-assisted proofs to a new scale. We fully detail the algorithm
employed by our code, and make the code freely available online
Strategically Equivalent Contests
Using a two-player Tullock-type contest, we show that intuitively and structurally different contests can be strategically equivalent. Strategically equivalent contests generate the same best response functions and, as a result, the same equilibrium efforts. However, strategically equivalent contests may yield different equilibrium payoffs. We propose a simple two-step procedure to identify strategically equivalent contests. Using this procedure, we identify contests that are strategically equivalent to the original Tullock contest, and provide new examples of strategically equivalent contests. Finally, we discuss possible contest design applications and avenues for future theoretical and empirical research
Associative3D: Volumetric Reconstruction from Sparse Views
This paper studies the problem of 3D volumetric reconstruction from two views
of a scene with an unknown camera. While seemingly easy for humans, this
problem poses many challenges for computers since it requires simultaneously
reconstructing objects in the two views while also figuring out their
relationship. We propose a new approach that estimates reconstructions,
distributions over the camera/object and camera/camera transformations, as well
as an inter-view object affinity matrix. This information is then jointly
reasoned over to produce the most likely explanation of the scene. We train and
test our approach on a dataset of indoor scenes, and rigorously evaluate the
merits of our joint reasoning approach. Our experiments show that it is able to
recover reasonable scenes from sparse views, while the problem is still
challenging. Project site: https://jasonqsy.github.io/Associative3DComment: ECCV 202
Image-to-Image Translation to Unfold the Reality of Artworks: an Empirical Analysis
State-of-the-art Computer Vision pipelines show poor performances on artworks and data coming from the artistic domain, thus limiting the applicability of current architectures to the automatic understanding of the cultural heritage. This is mainly due to the difference in texture and low-level feature distribution between artistic and real images, on which state-of-the-art approaches are usually trained. To enhance the applicability of pre-trained architectures on artistic data, we have recently proposed an unpaired domain translation approach which can translate artworks to photo-realistic visualizations. Our approach leverages semantically-aware memory banks of real patches, which are used to drive the generation of the translated image while improving its realism. In this paper, we provide additional analyses and experimental results which demonstrate the effectiveness of our approach. In particular, we evaluate the quality of generated results in the case of the translation of landscapes, portraits and of paintings coming from four different styles using automatic distance metrics. Also, we analyze the response of pre-trained architecture for classification, detection and segmentation both in terms of feature distribution and entropy of prediction, and show that our approach effectively reduces the domain shift of paintings. As an additional contribution, we also provide a qualitative analysis of the reduction of the domain shift for detection, segmentation and image captioning
Effects of external nutrient sources and extreme weather events on the nutrient budget of a Southern European coastal lagoon
The seasonal and annual nitrogen (N), phosphorus (P), and carbon (C) budgets of the mesotidal Ria Formosa lagoon, southern Portugal, were estimated to reveal the main inputs and outputs, the seasonal patterns, and how they may influence the ecological functioning of the system. The effects of extreme weather events such as long-lasting strong winds causing upwelling and strong rainfall were assessed. External nutrient inputs were quantified; ocean exchange was assessed in 24-h sampling campaigns, and final calculations were made using a hydrodynamic model of the lagoon. Rain and stream inputs were the main freshwater sources to the lagoon. However, wastewater treatment plant and groundwater discharges dominated nutrient input, together accounting for 98, 96, and 88 % of total C, N, and P input, respectively. Organic matter and nutrients were continuously exported to the ocean. This pattern was reversed following extreme events, such as strong winds in early summer that caused upwelling and after a period of heavy rainfall in late autumn. A principal component analysis (PCA) revealed that ammonium and organic N and C exchange were positively associated with temperature as opposed to pH and nitrate. These variables reflected mostly the benthic lagoon metabolism, whereas particulate P exchange was correlated to Chl a, indicating that this was more related to phytoplankton dynamics. The increase of stochastic events, as expected in climate change scenarios, may have strong effects on the ecological functioning of coastal lagoons, altering the C and nutrient budgets.Portuguese Science and Technology Foundation (FCT) [POCI/MAR/58427/2004, PPCDT/MAR/58427/2004]; Portuguese Science and Technology Foundation (FCT
Primary cilia elongation in response to interleukin-1 mediates the inflammatory response
Primary cilia are singular, cytoskeletal organelles present in the majority of mammalian cell types where they function as coordinating centres for mechanotransduction, Wnt and hedgehog signalling. The length of the primary cilium is proposed to modulate cilia function, governed in part by the activity of intraflagellar transport (IFT). In articular cartilage, primary cilia length is increased and hedgehog signaling activated in osteoarthritis (OA). Here, we examine primary cilia length with exposure to the quintessential inflammatory cytokine interleukin-1 (IL-1), which is up-regulated in OA. We then test the hypothesis that the cilium is involved in mediating the downstream inflammatory response. Primary chondrocytes treated with IL-1 exhibited a 50Â % increase in cilia length after 3Â h exposure. IL-1-induced cilia elongation was also observed in human fibroblasts. In chondrocytes, this elongation occurred via a protein kinase A (PKA)-dependent mechanism. G-protein coupled adenylate cyclase also regulated the length of chondrocyte primary cilia but not downstream of IL-1. Chondrocytes treated with IL-1 exhibit a characteristic increase in the release of the inflammatory chemokines, nitric oxide and prostaglandin E2. However, in cells with a mutation in IFT88 whereby the cilia structure is lost, this response to IL-1 was significantly attenuated and, in the case of nitric oxide, completely abolished. Inhibition of IL-1-induced cilia elongation by PKA inhibition also attenuated the chemokine response. These results suggest that cilia assembly regulates the response to inflammatory cytokines. Therefore, the cilia proteome may provide a novel therapeutic target for the treatment of inflammatory pathologies, including OA
- …