969 research outputs found
A Variant of GJD2, Encoding for Connexin 36, Alters the Function of Insulin Producing β-Cells.
Signalling through gap junctions contributes to control insulin secretion and, thus, blood glucose levels. Gap junctions of the insulin-producing β-cells are made of connexin 36 (Cx36), which is encoded by the GJD2 gene. Cx36-null mice feature alterations mimicking those observed in type 2 diabetes (T2D). GJD2 is also expressed in neurons, which share a number of common features with pancreatic β-cells. Given that a synonymous exonic single nucleotide polymorphism of human Cx36 (SNP rs3743123) associates with altered function of central neurons in a subset of epileptic patients, we investigated whether this SNP also caused alterations of β-cell function. Transfection of rs3743123 cDNA in connexin-lacking HeLa cells resulted in altered formation of gap junction plaques and cell coupling, as compared to those induced by wild type (WT) GJD2 cDNA. Transgenic mice expressing the very same cDNAs under an insulin promoter revealed that SNP rs3743123 expression consistently lead to a post-natal reduction of islet Cx36 levels and β-cell survival, resulting in hyperglycemia in selected lines. These changes were not observed in sex- and age-matched controls expressing WT hCx36. The variant GJD2 only marginally associated to heterogeneous populations of diabetic patients. The data document that a silent polymorphism of GJD2 is associated with altered β-cell function, presumably contributing to T2D pathogenesis
Effects of impurity scattering on electron-phonon resonances in semiconductor superlattice high-field transport
A non-equilibrium Green's function method is applied to model high-field
quantum transport and electron-phonon resonances in semiconductor
superlattices. The field-dependent density of states for elastic (impurity)
scattering is found non-perturbatively in an approach which can be applied to
both high and low electric fields. I-V curves, and specifically electron-phonon
resonances, are calculated by treating the inelastic (LO phonon) scattering
perturbatively. Calculations show how strong impurity scattering suppresses the
electron-phonon resonance peaks in I-V curves, and their detailed sensitivity
to the size, strength and concentration of impurities.Comment: 7 figures, 1 tabl
Field-induced delocalization and Zener breakdown in semiconductor superlattices
We investigate the energy spectrum and the electron dynamics of a band in a semiconductor superlattice as a function of the electric field. Linear optical spectroscopy shows that, for high fields, the well-known localization of the Bloch states is followed by a field-induced delocalization, associated with Zener breakdown. Using time-resolved measurements, we observe Bloch oscillations in a regime where they are damped by Zener breakdown
Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways
OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels.
RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening.
RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c.
CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c
Bloch oscillations of magnetic solitons in anisotropic spin-1/2 chains
We study the quantum dynamics of soliton-like domain walls in anisotropic
spin-1/2 chains in the presence of magnetic fields. In the absence of fields,
domain walls form a Bloch band of delocalized quantum states while a static
field applied along the easy axis localizes them into Wannier wave packets and
causes them to execute Bloch oscillations, i.e. the domain walls oscillate
along the chain with a finite Bloch frequency and amplitude. In the presence of
the field, the Bloch band, with a continuum of extended states, breaks up into
the Wannier-Zeeman ladder -- a discrete set of equally spaced energy levels. We
calculate the dynamical structure factor in the one-soliton sector at finite
frequency, wave vector, and temperature, and find sharp peaks at frequencies
which are integer multiples of the Bloch frequency. We further calculate the
uniform magnetic susceptibility and find that it too exhibits peaks at the
Bloch frequency. We identify several candidate materials where these Bloch
oscillations should be observable, for example, via neutron scattering
measurements. For the particular compound CoCl_2.2H_2O we estimate the Bloch
amplitude to be on the order of a few lattice constants, and the Bloch
frequency on the order of 100 GHz for magnetic fields in the Tesla range and at
temperatures of about 18 Kelvin.Comment: 31 single-spaced REVTeX pages, including 7 figures embedded with eps
Binding of biexcitons in GaAs/AlxGa1-xAs superlattices
Binding of the heavy-hole excitons and biexcitons in GaAs/Al0.3Ga0.7As superlattices is studied using linear and nonlinear optical techniques. High biexciton binding energies characteristic of quasi two-dimensional biexcitons are observed in superlattices with considerable miniband dispersion
- …
