12,151 research outputs found

    Deconstructing double-barred galaxies in 2D and 3D. II. Two distinct groups of inner bars

    Full text link
    The intrinsic photometric properties of inner and outer stellar bars within 17 double-barred galaxies are thoroughly studied through a photometric analysis consisting of: i) two-dimensional multi-component photometric decompositions, and ii) three-dimensional statistical deprojections for measuring the thickening of bars, thus retrieving their 3D shape. The results are compared with previous measurements obtained with the widely used analysis of integrated light. Large-scale bars in single- and double-barred systems show similar sizes, and inner bars may be longer than outer bars in different galaxies. We find two distinct groups of inner bars attending to their in-plane length and ellipticity, resulting in a bimodal behaviour for the inner/outer bar length ratio. Such bimodality is related neither to the properties of the host galaxy nor the dominant bulge, and it does not show a counterpart in the dimension off the disc plane. The group of long inner bars lays at the lower end of the outer bar length vs. ellipticity correlation, whereas the short inner bars are out of that relation. We suggest that this behaviour could be due to either a different nature of the inner discs from which the inner bars are dynamically formed, or a different assembly stage for the inner bars. This last possibility would imply that the dynamical assembly of inner bars is a slow process taking several Gyr to happen. We have also explored whether all large-scale bars are prone to develop an inner bar at some stage of their lives, possibility we cannot fully confirm or discard.Comment: 14 pages, 8 figures, 1 table. Accepted for publication in MNRA

    A discrete chemo-dynamical model of the dwarf spheroidal galaxy Sculptor: mass profile, velocity anisotropy and internal rotation

    Get PDF
    We present a new discrete chemo-dynamical axisymmetric modeling technique, which we apply to the dwarf spheroidal galaxy Sculptor. The major improvement over previous Jeans models is that realistic chemical distributions are included directly in the dynamical modelling of the discrete data. This avoids loss of information due to spatial binning and eliminates the need for hard cuts to remove contaminants and to separate stars based on their chemical properties. Using a combined likelihood in position, metallicity and kinematics, we find that our models naturally separate Sculptor stars into a metal-rich and a metal-poor population. Allowing for non-spherical symmetry, our approach provides a central slope of the dark matter density of γ=0.5±0.3\gamma = 0.5 \pm 0.3. The metal-rich population is nearly isotropic (with βrred=0.0±0.1\beta_r^{red} = 0.0\pm0.1) while the metal-poor population is tangentially anisotropic (with βrblue=0.2±0.1\beta_r^{blue} = -0.2\pm0.1) around the half light radius of 0.260.26 kpc. A weak internal rotation of the metal-rich population is revealed with vmax/σ0=0.15±0.15v_{max}/\sigma_0 = 0.15 \pm 0.15. We run tests using mock data to show that a discrete dataset with 6000\sim 6000 stars is required to distinguish between a core (γ=0\gamma = 0) and cusp (γ=1\gamma = 1), and to constrain the possible internal rotation to better than 1σ1\,\sigma confidence with our model. We conclude that our discrete chemo-dynamical modelling technique provides a flexible and powerful tool to robustly constrain the internal dynamics of multiple populations, and the total mass distribution in a stellar system.Comment: Accepted by MNRA

    The intrinsic three-dimensional shape of galactic bars

    Get PDF
    We present the first statistical study on the intrinsic three-dimensional (3D) shape of a sample of 83 galactic bars extracted from the CALIFA survey. We use the galaXYZ code to derive the bar intrinsic shape with a statistical approach. The method uses only the geometric information (ellipticities and position angles) of bars and discs obtained from a multi-component photometric decomposition of the galaxy surface-brightness distributions. We find that bars are predominantly prolate-triaxial ellipsoids (68%), with a small fraction of oblate-triaxial ellipsoids (32%). The typical flattening (intrinsic C/A semiaxis ratio) of the bars in our sample is 0.34, which matches well the typical intrinsic flattening of stellar discs at these galaxy masses. We demonstrate that, for prolate-triaxial bars, the intrinsic shape of bars depends on the galaxy Hubble type and stellar mass (bars in massive S0 galaxies are thicker and more circular than those in less massive spirals). The bar intrinsic shape correlates with bulge, disc, and bar parameters. In particular with the bulge-to-total (B/T) luminosity ratio, disc g-r color, and central surface brightness of the bar, confirming the tight link between bars and their host galaxies. Combining the probability distributions of the intrinsic shape of bulges and bars in our sample we show that 52% (16%) of bulges are thicker (flatter) than the surrounding bar at 1σ\sigma level. We suggest that these percentages might be representative of the fraction of classical and disc-like bulges in our sample, respectively.Comment: 18 pages, 11 figures, accepted for publication in MNRA

    CAR: A MATLAB Package to Compute Correspondence Analysis with Rotations

    Get PDF
    Correspondence analysis (CA) is a popular method that can be used to analyse relationships between categorical variables. Like principal component analysis, CA solutions can be rotated both orthogonally and obliquely to simple structure without affecting the total amount of explained inertia. We describe a MATLAB package for computing CA. The package includes orthogonal and oblique rotation of axes. It is designed not only for advanced users of MATLAB but also for beginners. Analysis can be done using a user-friendly interface, or by using command lines. We illustrate the use of CAR with one example.

    Spectral properties of a two-orbital Anderson impurity model across a non-Fermi liquid fixed point

    Full text link
    We study by NRG the spectral properties of a two-orbital Anderson impurity model in the presence of an exchange splitting which follows either regular or inverted Hund's rules. The phase diagram contains a non-Fermi liquid fixed point separating a screened phase, where conventional Kondo effect occurs, from an unscreened one, where the exchange-splitting takes care of quenching the impurity degrees of freedom. On the Kondo screened side close to this fixed point the impurity density of states shows a narrow Kondo-peak on top of a broader resonance. This narrow peak transforms in the unscreened phase into a narrow pseudo-gap inside the broad resonance. Right at the fixed point only the latter survives. The fixed point is therefore identified by a jump of the density of states at the chemical potential. We also show that particle-hole perturbations which simply shift the orbital energies do not wash out the fixed point, unlike those perturbations which hybridize the two orbitals. Consequently the density-of-state jump at the chemical potential remains finite even away from particle-hole symmetry, and the pseudo-gap stays pinned at the chemical potential, although it is partially filled in. We also discuss the relevance of these results for lattice models which map onto this Anderson impurity model in the limit of large lattice-coordination. Upon approaching the Mott metal-insulator transition, these lattice models necessarily enter a region with a local criticality which reflects the impurity non-Fermi liquid fixed point. However, unlike the impurity, the lattice can get rid of the single-impurity fixed-point instability by spontaneously developing bulk-coherent symmetry-broken phases, which we identify for different lattice models.Comment: 43 pages, 11 figures. Minor corrections in the Appendi

    Trajectory Clustering for Air Traffic Categorisation

    Get PDF
    Availability of different types of data and advances in data-driven techniques open the path to more detailed analyses of various phenomena. Here, we examine the insights that can be gained through the analysis of historical flight trajectories, using data mining techniques. The goal is to learn about usual (or nominal) choices airlines make in terms of routing, and their relation with aircraft types and operational flight costs. The clustering is applied to intra-European trajectories during one entire summer season, and a statistical test of independence is used to evaluate the relations between the variables of interest. Even though about half of all flights are less than 1000 km long, and mostly operated by one airline, along one trajectory, the analysis shows that, for longer flights, there exists a clear relation between the trajectory clusters and the operating airlines (in about 49% of city pairs) and/or the aircraft types (30%), and/or the flight costs (45%)

    A pathogenetic link between non-alcoholic fatty liver disease and celiac disease

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) has recently been recognized as the leading cause of the abnormalities in the liver function tests in the Western countries. Celiac disease (CD) is a permanent immunological intolerance to gluten proteins in genetically predisposed individuals. CD has been reported in 4-13 % of the cases with steatohepatitis, although the pathogenesis of the liver steatosis in CD patients is unclear. Based on the literature data, it can be concluded that the inclusion of serological markers of CD should be a part of the general workup in the patients with steatosis when other causes of the liver disease are excluded and in the patients with NAFLD when metabolic risk factors are not evident
    corecore