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ABSTRACT

We present a new discrete chemo-dynamical axisymmetric modelling technique, which we
apply to the dwarf spheroidal galaxy Sculptor. The major improvement over previous Jeans
models is that realistic chemical distributions are included directly in the dynamical modelling
of the discrete data. This avoids loss of information due to spatial binning and eliminates
the need for hard cuts to remove contaminants and to separate stars based on their chemical
properties. Using a combined likelihood in position, metallicity and kinematics, we find that
our models naturally separate Sculptor stars into a metal-rich and a metal-poor population.
Allowing for non-spherical symmetry, our approach provides a central slope of the dark matter
density of y = 0.5 4 0.3. The metal-rich population is nearly isotropic (with 8¢ = 0.0 £ 0.1),
while the metal-poor population is tangentially anisotropic (with 8™"¢ = —0.2 £ 0.1) around
the half-light radius of 0.26 kpc. A weak internal rotation of the metal-rich population is
revealed with v, /oo = 0.15 & 0.15. We run tests using mock data to show that a discrete
data set with ~6000 stars is required to distinguish between a core (y = 0) and cusp (y = 1),
and to constrain the possible internal rotation to better than 1o confidence with our model.
We conclude that our discrete chemo-dynamical modelling technique provides a flexible and
powerful tool to robustly constrain the internal dynamics of multiple populations, and the total

mass distribution in a stellar system.

Key words: galaxies: dwarf — galaxies: kinematics and dynamics.

1 INTRODUCTION

Recent advances in both the quantity and quality of data available
for the local population of dwarf spheroidal galaxies (dSphs) have
revealed many complexities. The dSphs Carina, Fornax, Sculptor
and Sextans all display evidence for the co-existence of at least two
stellar populations: a spatially concentrated metal-rich population
and a spatially extended metal-poor population (e.g. Kleyna et al.
2004; Tolstoy et al. 2004; Battaglia et al. 2008; Koch et al. 2008;
Breddels & Helmi 2014). Moreover, the velocity dispersion profiles
of the metal-poor stars are usually quite flat, while the metal-rich
stars tend to have smaller velocity dispersion with profiles that
decline sharply with radius (Battaglia et al. 2008, 2011; Amorisco &
Evans 2012b). This supports the idea that the dSphs have undergone
at least two different star formation episodes.

Study of the internal dynamics of these systems is crucial for
understanding the mechanisms that drive their second epoch of star
formation. The metal-rich secondary population may have formed
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from (re)accreted centrally concentrated gaseous material. N-body
simulations show that such a disc-like origin for a second-generation
stellar population can leave behind significant kinematic signatures,
including internal rotation, lower velocity dispersion and velocity
anisotropy (e.g. Mastrobuono-Battisti & Perets 2013). Violent pro-
cesses, such as tidal stirring, collisions and mergers, can also com-
press the gas and trigger a second period of star formation, possibly
resulting in counter-rotation or misalignment of the rotation axis
(e.g. Amorisco & Evans 2012b).

Another major motivation for separating stars into multiple pop-
ulations is to provide stronger constraints on the underlying grav-
itational potential of the system. There is still considerable debate
as to whether the central regions of such haloes are cored or cusped
(e.g. Kleyna et al. 2002; Koch et al. 2007; Walker et al. 2009b;
Walker & Pefarrubia 2011; Agnello & Evans 2012; Amorisco &
Evans 2012a; Breddels et al. 2013; Breddels & Helmi 2013). dSphs
provide an unprecedented opportunity to test the inner structure of
dark matter (DM) haloes as they are DM dominated at all radii and
they are dust free (e.g. Mateo 1998; Walker 2013 and reference
therein). The co-existence of multiple populations also enhances
our ability to distinguish between a cored and cusped haloes.

Published by Oxford University Press on behalf of the Royal Astronomical Society

810z Jaqualdeg gz uo Jesn usbuiuois) naustaaunsyiy Aq Z1006SZ/21 | L/L/S9F10BASqE-8o11E/SBIUW/WO0D dNO"dIWapee//:sd)y Wol) PapEojUMO(]


mailto:lzhu@mpia-hd.mpg.de
mailto:glenn@mpia.de

1118 L. Zhu et al.

In previous studies that have used a hard cut in metallicity to sep-
arate these different stellar populations (e.g. Battaglia et al. 2008),
the background contamination is hard to remove and the stars in the
overlap region are excluded from either of the populations. Even
s0, some cross contamination will likely remain and significantly
affect the dynamics of a population. Following a hard separation of
the two populations, a few two-component dynamical studies were
carried out to constrain the underlying DM halo by fitting the binned
velocity dispersion profiles of the two populations simultaneously
(e.g. Battaglia et al. 2008; Amorisco & Evans 2012a).

There are a few studies that have separated multiple stellar
populations using a combined likelihood for the spatial, chemi-
cal and velocity distributions to alleviate the cross-contamination
(e.g. Walker & Penarrubia 2011; Amorisco & Evans 2012b), and
constrain the mass slope simultaneously with the virial mass es-
timates (e.g.Walker & Pefarrubia 2011). For example, Amorisco
& Evans (2012b) showed that a division into three populations is
preferred for Fornax. They found internal rotation in the interme-
diate and metal-rich populations and possible counter-rotation in
the metal-poor population. As these rotation signals are very weak,
they could never be found by separating multiple populations using
a hard cut in metallicity. The virial masses for the two components
obtained simultaneously gives a strong constraint on the DM slope
(Walker & Pefiarrubia 2011; Agnello & Evans 2012), they exclude a
cusped DM halo with high significance. However, these studies as-
sume that Sculptor is spherical, whereas it has been shown to have a
flattening of ~0.72. When this ellipticity is accounted for, Walker &
Pefarrubia (2011) find that Sculptor prefers a density slope between
a ‘core’ and ‘cusp’. Another limit of this method is that virial esti-
mates also assume that both populations are dynamically isotropic
and do not allow for possible anisotropy.

In this paper, we construct chemo-dynamical models to separate
multiple populations and fit a dynamical model simultaneously with
different assumptions. The discrete Jeans Anisotropic MGE (JAM)
model (Watkins et al. 2013) uses the velocity information on the
observational plane, thus has the ability to recover the velocity
anisotropy of the discrete system similar to that of the system with
integral field unit data (Cappellari 2008; Li et al. 2016). We extend
the single-component discrete JAM models described in Watkins
et al. (2013) to include multiple populations. We consider different
stellar populations, tracing the same gravitational potential but each
with its own spatial, chemical and dynamical distributions. The
models are axisymmetric, the morphology of each population is
free to be flattened, and each population has velocity dispersion and
velocity anisotropy that follow the solution of the JAM model on
the observational plane.

We demonstrate the power of our modelling technique by apply-
ing it to several sets of mock data and the dSph galaxy Sculptor.
Section 2 describes the model implementation and Section 3 de-
scribes the application to the mock data. In Section 4, we apply it
to the real data of Sculptor. We discuss our result in Section 5 and
conclude in Section 6. In the appendix, we clarify the calculation
of the first velocity moment in the Jeans models.

2 DISCRETE CHEMO-DYNAMICAL MODELS

Consider adata set of N stars such that the ith star has sky coordinates
(x{, y/) and line-of-sight velocities v,/ ; & §v. ;. Here, x’ and y’ are
along the projected major axis and minor axis, and 7’ is along the
line of sight. We follow the discrete dynamical modelling approach
introduced by Watkins et al. (2013), in this case, without proper
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motions (PMs) but with the addition of metallicities Z; £+ §Z; in
order to construct discrete chemo-dynamical models.

We consider different stellar populations tracing the same grav-
itational potential, but each with its own chemical, spatial and dy-
namical properties. Even though the models can be generalized to
have k chemically different stellar populations, in what follows, we
assume k = 2 populations, consisting of a metal-rich and a metal-
poor stellar population, which we call red and blue populations.
Finally, contaminating or background stars are included as a third
population with a uniform spatial density, and simple metallicity
and dynamical distributions consistent with the Milky Way stellar
halo.

2.1 Gravitational potential

DSph galaxies like Sculptor typically have high mass-to-light ratios,
up to ~100 (e.g. Walker 2013 and references therein), indicating
that DM dominates at all scales and that the contributions from
luminous matter can be neglected. We adopt a generalized NFW
(gNFW) density distribution

Ps
(r/ry’(L+r/ry*r"

In the axisymmetric case, 7> = x> + y* + z%/g2, but since the flat-
tening g, of the DM halo is, to a large degree, degenerate with its
radial profile, line-of-sight data alone is expected to provide weak
constraints if both are left free. Hence, for this first application of our
new discrete chemo-dynamical model we will consider a spherical
DM halo with g, = 1.

There are three free halo parameters: the scale radius 7y, the scale
density ps, and the inner density slope y in the potential. When
y = 1, this leads to a cusped profile, while, for y = 0, there is a
core in the centre. In what follows, we will first leave y free, we
will consider later the two cases of a cusped y = 1 and cored y =0
DM haloes.

We use a Multi-Gaussian Expansion (MGE) of the density p
to simplify various calculations such as the computation of the
gravitational potential (Emsellem, Monnet & Bacon 1994) and the
solution of the axisymmetric Jeans equation (Cappellari 2008).

p(r) = @

2.2 Chemical probability

For each population k, we adopt a Gaussian distribution in metal-
licity with the mean metallicity Z} and metallicity dispersion o%
as two free parameters. Given a star i with measured metallicity

Z; &+ 8Z;, the chemical probability for population k is then

k2
pk 1 { 1 (Z: - Zp) @

chm,i = exp T AT kv o 21 .
" \ 27il(05)? + 827 2 [(03)? +6Z7]

2.3 Spatial probability

Each population has its own spatial distribution through the ob-
served surface number density S*(x’, y'). Given a star i at position
(x/, y!), the spatial probability for population k is then
sk, vl
P.sgai = % ’ (3)
' (X7, ¥;) + Zng
where X is the combined surface number density of all popula-
tions that belong to the object under consideration, excluding the
background surface number density X, which we assume to be
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uniform over the extent of the object and parametrize as a frac-
tion € of the central object surface number density, so that X, =
€ Eobj (0, 0)

Obtaining ¥ for each population can be challenging. In an op-
timal case, we construct the surface number density of all stars
from a complete photometric catalogue, which we then expand into
M Gaussians. We then consider that each Gaussian j contributes a
fraction h’; to the surface number density of each population so that

s y’2/q’1

Liexp )
27’[0’_,«2 2<7j2

M
s, y) = Z hﬁ
=1

where L;, 0}, ¢; are the total luminosity, dispersion and projected
flattening of each Gaussian j.

If we impose the constraint ), h’; = 1, then this implies, in the
case of the two stellar populations considered here, that if #*¢ = h;
then h°¢ = 1 — h; for every Gaussian. The fractions /; will be con-
strained through both the spatial and dynamical probability, because
the velocity distribution for a given tracer population predicted by
a dynamical model depends on both the gravitational potential and
the surface number density of the tracer population.

2.4 Dynamical probability

Given a star i with measured line-of-sight velocity v, ; & v, ;, the
dynamical probability for population k for an assumed Gaussian
velocity distribution is then

1 [ 1 (o — u?
(S

where ¥ and of are the line-of-sight mean velocity and velocity
dispersion as predicted by a dynamical model at the sky position
(x5, y)-

Following section 4 of Watkins et al. (2013, see also Cappellari
2008), we adopt here as a dynamical model the solution of the ax-
isymmetric Jeans equations under the two assumptions that: (i) the
velocity ellipsoid is aligned with the cylindrical coordinate system
so that vgv, = 0; and (ii) the velocity anisotropy in the meridional
plane ,Bf =1- vjz/ v% is constant. When the gravitational potential
and tracer density are expressed in terms of an MGE, as in our case,
the solution for the second-order velocity moments reduces to a sin-
gle numerical integral; this includes the integration along the line of
sight for a given inclination ¢ at which the object is observed. The
first-order velocity moments follow after setting the relative contri-
bution of ordered and random motions via a rotation parameter «*
(Cappellari 2008, but see Appendix A for our clarified definition
of rotation). The combination of predicted first-order and second-
order velocity moments yields 4% and o} for each population k as
position (¥, y').

Since the anisotropy parameter ﬁf_ ; and rotation parameter K;( for
each Gaussian j in the MGE of the tracer density can, in principle,
take on a different constant value, it is possible to model velocity
anisotropy in the meridional plane and intrinsic rotation that vary
with radius. However, in the current analysis, to restrict the number
of free parameters, we adopt a radially constant anisotropy and
rotation, i.e. ﬂf.j = ;3" and Kj.‘ = «* for all Gaussians j. However ;3"
and «* are allowed to vary between different populations k.

, &)

ko _
den,i -

2.5 Background

The main contamination comes from Milky Way halo stars. We
adopt a Gaussian metallicity distribution with fixed mean z(‘jg and

o;g. As mentioned in Section 2.3, the background surface number
density is assumed to be uniform across the extent of an extragalactic
stellar object, with free parameter € accounting for the level relative
to the central surface number density of the object. Finally, the
velocity distribution is assumed to be Gaussian with mean velocity
u?f = — Vi, the systematic velocity of the object compared to the
Milky Way stellar halo, and dispersion o(l)’ ¢ also fixed.

2.6 Total probability

Combining the above chemical, spatial and dynamical probabilities,
the likelihood for star i is
L; = Z pk . pk Pk

spa,i © chm,i * dyn,i
k#bg

b; b
+ 1— Z P\'l;)a.i Pchgm,i degn,i' (6)
k#bg

The summation is over all populations that belong to the object
under consideration; in the current study, this is a red and blue
population, in addition to the background. The total likelihood L =
Hf\/:l L; of all N stars is the quantity we wish to maximize.

For a model with all parameters known, the likelihood of each
star i to be within each population £ is
Pl =P, Pl Pini» (7

spa,i © chm,i

where k can be red, blue or the background. Then, the relative value

k
P[/k _ P,'k/ Z P[k (8)

can be used to identity the stars to be red, blue or background stars
separated by this model.

2.7 Model parameters

Here, we summarize the free parameters in our discrete chemo-
dynamical model of a stellar system with two chemically distinct
stellar populations.

Under the assumption that the gravitational potential is dominated
by a spherical DM halo with gNFW radial mass density profile,
there are three free potential parameters:

(1) ps, the scale density;
(2) rs, the scale radius;
(3) y, central density slope: cusped y = 1 versus cored y = 0.

Under the assumption that the distribution of stars in the object
under study is oblate axisymmetric and that, over its extent, the
distribution of contaminating stars is uniform, the viewing orienta-
tion and background influence are described with two free global
parameters:

(1) g, average intrinsic flattening, directly related inclination an-
gle ¥ via the relation ?2 = cos ¥% + g sin 92, given the observed
average flattening ¢’;

(2) €, fraction background surface number density level relative
to centre of object, so that Xy, = € (0, 0).

We further assume that the stellar system consists of a red (metal-
rich) and blue (metal-poor) stellar populations, both with a Gaussian
metallicity distribution and a Gaussian line-of-sight velocity distri-
bution as predicted by an axisymmetric Jeans model, this adds four

MNRAS 463, 1117-1135 (2016)
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Table 1. The input parameters for the mock data, from left to right: name of the sample, sample size, fraction of the red population fi.q, DM scale density

ps M@ pc 31, the scale radius r, [pc], central density slope y, the intrinsic flattening for the metal-poor

blue red
VA

Zgluc and Z{)Cd, metallicity spread o

parameters (A‘Z’]“e, )Lged) and rotation parameters («°'¢,

and o7¢, velocity anisotropy parameters )»E,‘I“e and )»‘Z‘ed, the rotation parameters x
«"d) vary with radius in the mock data, here we only show the average values.

7" and metal-rich "¢

blue

populations, mean metallicity
and «™4. The velocity anisotropy

Data Sample size fred per cent log (ps) log (r¢) y qblue ﬁred Z(t;]ue Z(r)ed U;lue U?d Aglue A;ed 4 blue scred
Cored

S035 6417 50 —0.189 3.0 00 088 08 010 045 0.2 0.15 0.4 —-0.1 000 035
S025 - - - - - - - 0.10  0.35 - - - - - -
85025 173 2250 - - - - - - 0.10  0.35 - - - - - -
Cusped

S035 5360 54 —1.189 3.0 1.0 095 08 010 045 0.12 015 -01 =01 0.00 0.30
5025 - - - - - - - 010 035 - - - - - -
5025 1/3 1610 - - - - - - 010 035 - - - - - -

free population parameters per population. For the red population,
they are:

(1) Z'4, mean of the Gaussian metallicity distribution for the red

0 y
population;

(2) o4, dispersion of the Gaussian metallicity distribution;

z p y

(3) A = —In (1 — p¢), symmetric re-casting the constant ve-
locity anisotropy in the meridional plane B¢,

(4) k™4, rotation parameter for the red population.

P pop!

Correspondingly, for the blue population, the free parameters
are:

(1) Z§;
@) o3
(3) )Lblue;
(4) Kblue.

Finally, depending on the number of Gaussian components into
which the observed total surface number density distribution is be-
ing decomposed, there will be additional parameters /;, describing
the fractional contribution of the red stellar population to each of
the Gaussian components, that are left free.

3 APPLICATION TO MOCK DATA

The ability of axisymmetric Jeans models to recover the mass profile
and velocity anisotropy of different types of galaxies has already
been established statistically with thousands of simulated galaxies
in Li et al. (2016). We focus on testing how well we are able to
distinguish two chemically and kinematically distinct populations
from discrete data, while simultaneously recovering the underlying
gravitational potential.

Two-component mock data sets are available at the Gaia Chal-
lenge wiki,! but they are all spherically symmetric. Therefore, we
create our own axisymmetric two-component mock data sets us-
ing analytic distribution functions (DFs), and make them public
as online material with this paper. The mock data sets have been
generated using a modified version of the Acama” code, whose func-
tionalities will be described in an upcoming paper (Vasiliev et al. in
preparation).

! astrowiki.ph.surrey.ac.uk/dokuwiki/doku.php?id=tests:sphtri
2 https://github.com/GalacticDynamics-Oxford/Agama
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3.1 Mock data
We create mock data as follows.

(1) Gravitational potential. We adopt a gNFW profile (see equa-
tion 1) for the DM halo and generate two sets of mock data: one
with a cusped halo (y = 1) and one with a cored halo (y = 0). The
input gravitational potential parameters are listed in Table 1.

(i1) Tracer densities and kinematics. In general, we generate two
stellar components as discrete realizations of continuous models
whose DFs are analytic functions of three action integrals J. By
sampling the DFs we self-consistently generate both the positions
and velocities of a sample of 5000 stars for each population under
the influence of the DM halo potential. We employ f = f(J) DFs
that are double power laws in the action integrals, and so generate
stellar density distributions that are double power laws of radius.
In particular, we fix the two power-law slopes so to have stellar
density distributions which closely follow isochrone (Henon 1959)
distributions (see Posti et al. 2015, Section 4.1). The models are ax-
isymmetric, anisotropic, rotating and flattened (either by anisotropy
or rotation) and are described in Posti et al. (in preparation), who
introduced them to model elliptical and lenticular galaxies.

The spatial distributions and kinematics of the two stellar popu-
lations are similar but not identical in the two mock data sets with
different DM haloes.

In both mock data sets, the metal-rich population has an isochrone
scale radius that is approximately twice as small as that for the
metal-poor population.

The metal-rich population has a non-negligible rotation veloc-
ity peaking at about ~9kms~!. It is almost isotropic within the
constant-density core, and becomes tangentially biased further out.
The metal-poor population is effectively non-rotating. The velocity
anisotropy is different in the two mock data sets: in the cusped mock
data, the metal-poor population has similar velocity anisotropy to
the metal-rich population, while in the cored mock data it becomes
radially biased further out. The overall velocity distributions are
shown in the right-hand panels of Fig. 1.

(iii) Metallicity. We assume that the metallicity distribution of
each population follows a Gaussian profile, with different separa-
tions of the two populations. We create two metallicity distributions:
S035 with 0.35 dex separation and S025 with 0.25 dex separation of
the two populations, for each set of the data. The combined metal-
licity distributions of our samples are shown in Fig. 2, with the
corresponding Gaussian parameters in Table 1.

(iv) Simulate real data. We project the system 20° away from
edge-on with inclination angle ¢ = 70°, and place it at a dis-
tance of 79 kpc. Then we extract the position, line-of-sight velocity,
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Surface number density LOS velocity distribution
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Figure 1. The surface number density profiles and the velocity distributions
of the mock data. The upper panels are for the cored mock data and the
bottom panels are for the cusped mock data. Red lines represent metal-rich
populations, blue lines represent metal-poor populations and the black lines
are the total. In the left-hand panels, the solid lines represent the original
surface number density profiles and the dashed lines are those for the selected
discrete data points.

Metallicity distribution
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Figure 2. The metallicity distributions. fiq indicates the fraction of red
stars in the sample. We create two metallicity distributions: SO35 with 0.35
dex separation and S025 with 0.25 dex separation of the two populations.
The metallicity separation of the two populations in Sculptor is similar to
S025.

and metallicity of each star. We randomly draw points with (x;, y;,
v, + 0v, i, Z; + 8Z;) from the blue population and red population.
The spatial sampling is biased by the selection function that stars
in the inner regions are less likely selected (Walker & Pefiarrubia
2011), and we truncate at the projected radius of 2 kpc. The surface
number density profile of the selected discrete data points (dashed
lines) are shown in Fig 1. The velocity and metallicity have been
perturbed with typical velocity error of 3 km s~'and typical metal-
licity error of 0.1 dex.

(v) Combine populations. We combine the data points from the
two populations together, yielding a red population fraction of
frea = S0percent in the cored samples and f.q = 54 percent in
the cusped samples.

(vi) Sample selection. For the S025 samples, we draw 1/3 of the
stars at random to form a new sample, which we refer to as the
8035 1/3 sample. With ~2000 stars, the so-called S025 1/3 samples
have similar size of the real data sample we have for Sculptor. The
kinematic properties and metallicity distributions of this 1/3 sample
are kept the same as the corresponding full sample. We create six
mock data sets in total.

The six mock data sets are summarized in Table 1. The velocity
anisotropy parameters (A?lue, )Lfd) and rotation parameters (k"¢
«"4) are calculated from the mock data with full 6D (x, y, z, vy, vy,
v.) information. They actually vary with radius in the mock data,
here we only show the average values.

Our dynamical models require a surface number density profile
for each tracer population in the form of an MGE. We know the
surface number density profiles of the two populations in the mock
data; however, we do not use them in our chemo-dynamical model.
With the real photometric data, the surface number densities of
the true red and blue populations are usually unknown, so here we
take a process similar to that used for real Sculptor data. The true
surface number density profile of the red (X"™° red(y/, y')) and blue
population (X'™¢PUe(x’ 1)) will be taken as two backbone shapes;
the surface number density profile for the red and blue population
we put in the model will be a combination of these two shapes:

ErEd()C/, y/) — hl Ztruered(x/’ y/) + hz Etrueblue(x/’ y/)’ (9)

and similarly for the blue population with fractions 1 — h; and
1 — hy. As a result, the combined surface number density profile
of the two populations is fixed, the fractions 4, and h, are two free
density parameters in addition to the 13 free parameters described
in Section 2.7. We did not include background stars in our mock
data, thus the background fraction € is kept at zero. We have 14 free
parameters in total when modelling the mock data.

3.2 Modelling

3.2.1 The MCMC process

We apply our discrete chemo-dynamical model with a gNFW DM
halo to the six mock data sets. We use the EMCEE package (Foreman-
Mackey et al. 2013) — a pure pyTHON implementation of the affine-
invariant MCMC ensemble sampler — to efficiently explore the pa-
rameter space of our models. For each set of models, 200 walkers
with 600 steps are used. As members of the ensemble, the walkers
are almost like separate Metropolis—Hasting chains except that the
proposal distribution for a given walker depends on the positions of
all the other walkers in the ensemble.

The models converge well even with 14 free parameters. Fig. 3
shows the projected two-dimensional distributions for 7 of the 14
parameters (omitting the parameters which are not directly related
to the dynamics) for the gNFW model of the cusped mock S035
data set. The red lines represent the true values of the mock data,
and the black ellipses represent the 1o, 20 and 30 regions of the
projected covariance matrix. With the cusped S035 samples, our
models recover the three potential parameters and the kinematic
properties of the two populations perfectly well, although there is a
strong degeneracy among the three potential parameters.

The potential and the kinematic parameters are generally recov-
ered by all the data sets, although as expected, the uncertainties
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Figure 3. MCMC post-burn distributions for a gNFW model of the cusped mock S035 data set. The scatter plots show the projected two-dimensional
distributions, with the points coloured by their likelihoods from blue (low) to red (high). The ellipses represent the 1o, 20 and 30 regions of the projected
covariance matrix. The histograms show the projected one-dimensional distributions. The red lines represent the true values of the mock data. The parameters
from left to right: DM scale density ps, DM scale radius r;, the DM inner density slope y, velocity anisotropy parameter of the red A™¢ and the blue population

AP rotation parameter of the red population x™

increase with decreasing metallicity separations of the two popu-
lations (S025 samples) and with decreasing number of data points
(85025 1/3 samples). The recovered model parameters for all the six
mock data sets are summarized in Table 2.

3.2.2 Probability distribution

Each star has its non-zero probability of belonging to the red or blue
population in the model as we described in Section 2.6. The prob-
ability distribution of stars in the best-fitting model of the cusped
S035 data is shown in the left-hand panel of Fig. 4. The probability
distribution of the true red stars peaked at P,,; ~ 1 as expected, then
gradually decreases and has a long tail to P/, ~ 0; the blue stars
show a similar trend.

With mock data, we know the true red and blue stars, so we
can calculate the true kinematics of the two populations using their
member stars and compare with our model prediction. However, in
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and the blue population «

the real case, we do not know the true members of each population.
Thus we want to find a way to extract the true kinematics of the two
populations from the stars based on their probability distributions.

In principle, we can extract properties of the red (blue) popula-
tions from all the stars weighted with PJ, (Py,.). Practically, we
find this approach works well to get the kinematics of each popula-
tion, but it tends to smooth the kinematical profiles, thus does not
represent the fluctuations of the data well.

As illustrated in Fig. 4, we find that if we take a probability cut at
0.5 (P4 > 0.5 for red; P, > 0.5 for blue) to separate the two
populations, the majority of the red and blue stars will be identified
correctly. Only a small fraction of stars (the long tails of the red
and blue solid histograms) will be misidentified. The right-hand
panels of Fig. 4 show the spatial, metallicity and global velocity
distribution of the four groups.

The blue tail actually has spatial, metallicity and kinematic prop-
erties close to the majority group of red population, while the prop-
erties of the red tail is similar to the majority group of blue stars.
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Table 2. The parameters recovered by our chemo-dynamical model with different mock data sets. The general true values for the Cored and Cusped model
are shown for comparison purpose. The parameters are presented in two rows for each model. The first column is the name of the sample, the second column
marked the number of data points used, the first row following from left to right: DM scale density ps, DM scale radius rs, central density slope y, the
inclination angle ¢, the fraction & and h; of the true red and true blue surface number density profiles contributing to the red population. Second row from left

to right: mean metallicity ZJ® and Z&*, metallicity spread o' and o, velocity anisotropy parameter 2% and 27, the rotation parameter k"¢ and x™d.
Data Points log (ps[Mp pc3) log (rs[pc]) y hy hy
Z(t))]ue Z{)ed o_glue O’?d }lejlue )Lzed Khlue Kred
Cored - —1.2 3.0 0 70° 1.0 0.0
0.1 0.45/0.35 0.12 0.15 0.40 —0.1 0.0 0.35
S035 6417 —1.1£0.2 2.97 +£0.09 0.1+£0.2 78°+9 0.99 £ 0.01 0.02 £ 0.01
0.102 £ 0.003 0.452 4+ 0.009 0.117 £ 0.002 0.141 £ 0.006 0.20 £0.05 —0.26 +0.08 0.1£0.1 0.32 £0.05
85025 6417 —1.3£03 3.1£0.1 03+03 78°+9 0.98 +0.02 0.03 £ 0.02
0.106 £ 0.004 0.363 & 0.006 0.117 £ 0.004 0.141 £ 0.005 03+£0.1 —04£0.1 0.1£0.1 0.32 £ 0.06
8025 1/3 2250 —1.5+04 32£0.2 03+04 79° £ 9 0.96 +0.03 0.09 £ 0.05
0.105 £ 0.008 0.38 £ 0.01 0.119 £ 0.008 0.135 £0.01 02+£0.1 —-03+02 00+£0.2 03+£0.1
Cusped - —1.2 3.0 1 70° 1.0 0.0
0.1 0.45/0.35 0.12 0.15 —0.1 —0.1 0.0 0.3
S035 5360 —124+03 3.0+0.1 1.0+£0.2 78°£9 0.95 £0.01 0.01 £ 0.01
0.105 £ 0.004 0.460 £ 0.004 0.118 £ 0.005 0.144 £ 0.004 —0.16 £ 0.06 —0.09 £ 0.06 —0.03 £0.07 0.28 £ 0.05
S5025 5360 —0.8+04 28+£0.2 0.7+£0.3 79°+£9 0.95 £0.02 0.02 £ 0.01
0.104 £ 0.005 0.362 £ 0.004 0.118 £ 0.005 0.142 £ 0.004 —0.16 £ 0.07 —0.07 £0.05 —0.00 £ 0.07 0.29 £ 0.05
85025 1/3 1610 —0.8+0.6 28+0.2 0.8+£0.4 79° £ 10 0.95 £0.03 0.05 £0.03
0.104 £ 0.008 0.371 £ 0.008 0.119 £ 0.009 0.138 £ 0.009 0.0=£0.1 -02+£02 0.1 £0.3 0.19 £ 0.08
I T ] = 3.3 Model recovery
| : True red : RIS
u _IP_rrGfé >b|?12 | M 3.3.1 The recovery of the kinematics
800 = = = = Py, >05 7 . . ..
: S i S To chemically tag stars, we could use the classic metallicity, or some
' : -40. '20-V [gr-n/S]ZO- 40. proxy, such as colour. We rely on relative values to perform the
g 6001 | ] : population separation. The real metallicity distributions of the two
,g : i “1 populations of Sculptor have overlaps similar to the S025 samples.
5 I Hl We illustrate the recovery of the spatial distribution, metallicity
€ 200! : | 4 distribution and kinematics of the two populations using the results
3 i | 102000204 o.eH 08 1.0 of the cored S025 1/3 and cusped S025 1/3 mock data.
: I—' Metallicity Z With mock data, we know the true kinematic properties of the
200l L5 g =i two populations from their member stars. To assess how well our
. § L WL models are able to recover these true kinematic properties, we make
- —— o two comparisons: (1) we use the probabilities output by the model
o i —_— to identify red (P > 0.5) and blue (P?"*® > 0.5) populations and
00 02 04 06 08 1.0 20 40._60. 80. 100 then estimate the kinematic properties of each population from

P,red =1- P’blue

Figure 4. The left-hand panel shows the probability distribution of the
stars in the best-fitting model of cusped S035 data. The red and blue solid
lines represent the true red and true blue stars, the yellow dashed is for the
model-identified red stars (P[’rCd > 0.5) and light blue dashed line is for the
model-identified blue stars (Pi/blue > 0.5). The right-hand panels show the
corresponding spatial, metallicity and global velocity distribution of these
four groups. The true red (blue) stars have similar distributions to the red
(blue) stars identified by a probability cut.

Thus, the two populations identified by the probability cut have
the properties representative of the true red/blue populations. This
process does not bias more than weighting all the stars, moreover,
it simplifies the separation of two populations. We adopt the hard
cut on probability to separate the two populations and show that it
works well in Section 3.3.1.

the data; (2) we extract the model kinematic properties of the two
populations using the best-fitting model parameters.

Fig. 5 shows the recovery of the global properties of the two
populations. To represent the spatial distribution of the stars, we
define the projected semimajor elliptical radius R':

R’ = sign(x) x W, (10)
with g' = 0.90 for the mock data. We use R = \/x2 + (y'/q')?
representing the projected elliptical radius in the paper.

The scatter panel represents the distribution of stars in R’ versus
the metallicity Z, the bottom scatter panel represents R’ versus rel-
ative line-of-sight velocity v,. The true distributions (red and blue
dashed histograms) of surface number density, metallicity and ve-
locity of the two populations are generally recovered by the model-
separated red and blue stars (red and blue solid histograms).

In Fig. 6, we show the kinematic profiles of the two sets of mock
data, and that recovered by the model. We extract the mean velocity
and velocity dispersion profiles along the major and minor axis
from the discrete data. The binning is performed along each axis
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Figure 5. The global properties of the two populations in the cored S025 1/3 (left) and cusped S025 1/3 (right) mock data sets and that recovered by our
discrete chemo-dynamical model. There are five panels on each side. Top scatter panel: the projected semimajor elliptical radius R’ versus the metallicity Z.
Bottom scatter panel: R" versus relative line-of-sight velocity v.. Stars are plotted with points coloured by P,.,re‘Jl from blue (low) to red (high). The redder
colours represent stars with higher probability to be in the red population, while the blue points represent stars with higher probability to be in the blue
population. The red and blue dashed histograms show the true spatial, chemical and velocity distributions for the red and blue populations in the mock data.
The solid histograms overlapped are the corresponding distributions of the red and blue stars identified by our chemo-dynamical models. Note that the velocity
dispersion actually varies with radius, but here we plot the global velocity distribution for each population.

with the stars in a cone of 45° around that axis included. The mean
velocity is binned along the projected semimajor/semiminor axis,
and we combine the stars in positive and negative directions together
when calculating the velocity dispersion. Note that R’ represents
the semimajor radius as defined in equation (10) for the data binned
along the major axis, while for the data binned along minor axis, R’
represent the semiminor radius(sign(y’) x R).

‘We use equal-population binning with 200 points in each bin; the
bins do not overlap except for the outermost two bins. The average
radius of the 200 stars is taken as the value of radius of each bin,
and the horizontal bar covers the radial range that the 200 stars
span. The model predictions for the red and blue populations are
calculated from the kinematic maps for each population, with the
same binning method as applied to the data. The mean and scatter
of the values are calculated with the models from every second of
the last 50 steps of MCMC process.

For both mock data sets, we include a weak rotation in the red
population with «/%¢ ~ 0.3. We see this rotation in the mean velocity
profile of the true red populations (red crosses). The model matches
this rotation with well-recovered «™4, and the model-identified red
stars follow the same trend (the red dots). There is no rotation in the
true blue population, which is matched by the model, and followed
by the model-identified blue stars.

For the velocity dispersion profiles, our model-identified stars
(dots) always follow the true red and blue populations (crosses).
The JAM models describe the velocity anisotropy profiles well for
the red populations of both mock data sets and the blue population
in the cusped mock data. For an axisymmetric system following
the assumptions of the JAM models, the information of velocity
anisotropy is encoded in the difference of velocity dispersion along
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the major and minor axes. This difference is clearly seen in the
velocity dispersion profiles binned from the true red and blue popu-
lations. In both cored and cusped mock data, the red population has
a higher velocity dispersion along the major axis, which is matched
well by the model predictions (the lines); the same is true for the
blue population in the cusped mock data set. However, the JAM
model describes the kinematics less well for the blue population of
the cored mock data, radially as well as azimuthally. This affects our
estimates of the velocity anisotropy of the blue population and the
mass profiles in the cored mock data as we show in Section 3.3.3.

3.3.2 The rotation parameters

The weak rotations are recovered well by our models as shown in
Fig. 7. We find that:

(i) The weak rotations in red populations and the zero rotations
in the blue populations are generally recovered.

(ii) The model tends to slightly underestimate the weak rotation
of the red population. While a rotation parameter of ~0.1 for the
blue population could be artificially introduced, and it tends to be
positive (in the same direction as the red population).

(iii) The 1/3 samples have weaker ability to recover the rotation,
with error bars as twice large as that from the full samples.

3.3.3 The mass profiles and velocity anisotropies

The ability of our model to recover the mass profiles, especially the
inner mass profiles depends critically on the ability to recover the
kinematics of the two populations.
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Figure 6. The kinematic properties of the two populations in the cored S025 1/3 (left) and cusped S025 1/3 (right) mock data sets and that recovered by our
discrete chemo-dynamical model. The four panels on each side show the mean velocity (left) and velocity dispersion (right) for the red population (top) and
the blue population (bottom). In each panel, the coloured symbols represent quantities along the major axis, and the black symbols represent that along the
minor axis. The crosses represent the true value of velocity (velocity dispersion) binned from the true red (blue) stars, the corresponding values binned from
red (blue) stars identified by our model are represented by dots, the corresponding model prediction with 1o error is shown by the solid and dashed curves.
The typical 1o error bar of the data is shown in the bottom-right corner. The crosses and dots with the same colour in each panel show the same trend as
predicted by the model (solid line in the same colour). In general, the JAM models describe the velocity dispersion profiles well, with the exception of the blue

population in the cored mock data.

Figs 8 and 9 show the recovery of mass profiles, the deviation
of mass profiles from the true mass, density slope profiles, and the
velocity anisotropy parameter B! and g™ (converted from A’
and A?l“c) with different sets of mock data. In each panel the black
line represents the true value. The true velocity anisotropy profiles,
varying with radius, are calculated from the mock data with full 6D
information. We find that:

(i) The mass profiles are generally well recovered within
~20 per cent uncertainties, except for larger uncertainties in the in-
ner 10 arcmin (~200 pc). And we generally find the medium value
of the velocity anisotropy profile for each population by assuming
constant velocity anisotropy parameter §, in our models.

(ii) The DM density slope profiles are fully recovered for the
S035 samples. The uncertainties increase with decreasing metallic-
ity separation of the two population and with decreasing number of
data points. However, we can still distinguish the cored and cusped
profiles with the S025 1/3 samples although with 1o uncertainties
of ~0.3 for the inner slope y .

(iii) The recovery is generally worse for the cored mock data
sets. The JAM models describe the velocity dispersions of the blue
population less well (see also Fig. 6). As a result, the velocity
anisotropy parameters of the two populations (especially ,3}"“‘3), as

well as the underlying gravitational potential, are recovered less
well with the cored mock data.

4 SCULPTOR DWARF SPHEROIDAL GALAXY

Sculptor is centred at ay000 = 1"0™M6336, 82000 = —33°42'1276 with
a position angle measured north through east of 85°, a systematic
velocity Ve = 110.6 & 0.5 km s~!, and at a heliocentric distance
D = 79.3kpc (Battaglia et al. 2008; de Boer et al. 2011). The
half-light radius is r, = 0.26 £ 0.039 kpc (Walker et al. 2009b).

4.1 Data and models

4.1.1 Spectroscopic data

We use the spectroscopic data from the Magellan/MMFS Survey of
Stellar Velocities for Sculptor (Walker, Mateo & Olszewski 2009a).
There are 1497 red giant branch (RGB) stars with line-of-sight
velocity and metallicity measurements in total in the sample. The
lower limit of the tidal radius r, of Sculptor is ~1300 arcsec (Walker
& Pefiarrubia 2011); we cut the data at 2000 arcsec ~1.5 r;, leaving
1340 data points. Of these, we use only the 1218 good-quality
stars for which both iron and magnesium indices and line-of-sight
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data sets. The red, light blue and dark blue diamonds with error bars are
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represent the correspondingly values recovered by the cusped mock data
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Figure 8. The recovered mass profiles, density slope profiles, mass devi-
ation from the true value, ﬂ;ed and ,B?l“e from models constrained by the
three sets of cored mock data. In all five panels, the black line represent the
true values. The red dashed, light blue and dark blue lines represent that
recovered by the S035, S025, S025 1/3 mock data sets. Note that we have
converted A, to B; in the figure. The vertical short lines in all panels show
the lo error at that particular position.

(LOS) velocities have been measured as the tracers for our chemo-
dynamical models.

We subtract the systemic velocity before creating the model.
Since Sculptor has a large extent on the plane of the sky, its sys-
temic motion may produce a non-negligible amount of perspective
rotation (Feast, Thackeray & Wesselink 1961) which also has to
be subtracted. Expanding this perspective rotation in terms of the
reciprocal of the distance D, and ignoring the negligible terms of
order of 1/D? or smaller, the following equation is obtained (van
de Ven et al. 2006):

W = 1.3790 x 103 (x’ufj“' + y/u;yf) D kms™!. (11
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Figure 9. The same as Fig. 8, but for the three sets of cusped mock data.

For the global PM, we adopt (,ui,y,s, ,ufvy,s) =09+13,2+13) x
1072 mas yr~! as determined from HST measurements (Piatek et al.
2006).

We adopt the relative metallicity defined in Walker et al. (2009a)
Mg = —(0.079 £ 0.002)(V — Vigp) + Mg, 12)

where V — Vyp is the offset in V-band luminosity from the hori-
zontal branch (HB), with Vg = 20.1 mag for Sculptor (Walker &
Pefiarrubia 2011). The slope quantifies the dependence of opacity
on effective temperature and surface gravity, using luminosity as a
proxy. The intercept, or reduced index X Mg’, represents the value
of X Mg that the star would have if it had the surface gravity and
temperature of an HB star. Then taking the empirical calibration
given by equation (12) at face value, RGB stars of similar metal-
licity should have similar X Mg’, which, thus, will be used as the
relative metallicity Z of the stars.

The relative metallicity Mg’ has not been calibrated with the
absolute metallicity, so we do not use the metallicity distribution of
the Milky Way halo from the literature in our background. Instead,
we turn to the data. There are 19 stars outside 4000 arcsec with
a roughly Gaussian velocity distribution centred at —Vy,, with no
significant excess at the velocity of Sculptor. We consider these 19
stars as halo stars and obtain o = 67 km s~', Z¥ = 0.67 and
agg = 0.21. The metallicity distribution of these 19 stars will be
used as the fixed background parameters in our model. However
our velocity dispersion o*® = 67 km s~'is smaller than the halo’s
average velocity dispersion of 105 km s~!Xue et al. (2008), so we
take the value 105 km s~'as the background velocity dispersion.

4.1.2 Surface number density

Our dynamical models require a surface number density profile for
each tracer population in the form of an MGE. We have kinematic
data for a sample of RGB stars that we will separate into a metal-rich
(red) population and a metal-poor (blue) population in the model,
so we require the number density profiles of both the red RGB stars
and the blue RGB stars separately.

Battaglia et al. (2008) presented the surface number density pro-
file for all RGB stars from ESO WFI photometry by counting the
number of stars in elliptical shells with ellipticity of 0.28. The major
axis profile is shown as black diamonds in Fig. 10. Separating the
contributions of the red RGB stars and the blue RGB stars to this

810z Jaqualdeg gz uo Jesn usbuiuois) naustaaunsyiy Aq Z1006SZ/21 | L/L/S9F10BASqE-8o11E/SBIUW/WO0D dNO"dIWapee//:sd)y Wol) PapEojUMO(]



A discrete chemo-dynamical model of Sculptor 1127

5?""""I“‘I“‘I“'I“"I“T

£ Battaglia2008 RGB & ]

r RHB ]

E BHB o ]

4+ MGE RHB + BHB -

F MGE RHB .

— MGE BHB ]
N F 1
£ E ]
£ 3- =
5 F ]
e - 4
© [ 1
D r 1
g 2 ]
- r E
” E ]
W ]
10 ]
(0} b

15 20 25 30
X [arcmin ]

5 10

Figure 10. Surface number density profiles for various type of stars. The
orange and green diamonds with error bars are the RHB and BHB stars
from Battaglia et al. (2008). The orange and green solid curves are the
corresponding MGE fits. The black solid curve is the sum of the orange and
green curves. The latter sum nicely matches the profiles of the RGB stars
which is renormalized in scale.

Table 3. MGE fits of RHB and BHB surface number density profiles from
Battaglia et al. (2008). L; is arbitrarily normalized. The left three Gaussians
are the decomposition of the surface number density profile of RHB stars,
while the right three are that of the BHB stars. The combination of these six
Gaussians will be treated as the total surface number density profile of RGB
stars.

MGE fit RHB stars MGE fit BHB stars

J L oj q; i L 0j q;

1 0.50 193.0 0.72 4 0.52 346.9 0.72
2 1.64 347.7 0.72 5 0.94 664.1 0.72
3 0.57 602.1 0.72 6 0.07 1824.0 0.72

total RGB surface number density profile is difficult. In principle,
we could leave the profiles of the red and blue populations com-
pletely free, with only their combined profile constrained by the
observed total RGB surface number density profile. However, this
will result in too many free parameters.

It is commonly assumed that the red and blue populations of RGB
stars follow the number density profiles of red and blue horizontal
branch (RHB and BHB) stars which can be clearly separated (e.g.
Battaglia et al. 2008; Amorisco & Evans 2012a). Battaglia et al.
(2008) also constructed surface number density profiles of RHB
and BHB stars; these are shown as orange and green diamonds,
respectively, in Fig. 10. We fitted one-dimensional MGE:s to these
profiles; the ellipticity of the surface number density is measured
to be approximately constant with radius, so we adopt the same
projected flattening ¢’; = 0.72 for each Gaussian j. The fits are
shown as orange and green curves in Fig. 10 and also listed in
Table 3. The total surface number density for the HB stars is the
sum of these two profiles and is shown as the black line in Fig. 10.

This combined RHB+BHB profile is in good agreement with
the RGB profile so using the RHB and BHB profiles as proxies for
the red and blue RGB profiles seems reasonable. However, instead
of assuming that the red and blue RGB stars follow the number
density profiles of RHB and BHB stars exactly, as previous studies
have done, we allow the red and blue RGB profiles to be a linear

combinations of the RHB and BHB profiles. Similar to the approach
we used for the mock data, the resulting surface number density of
the red population is then

Ty = BEEGCY) + hy TPy, (13)

and similarly for the blue population with fractions 1 — A; and
1 — hy. As a result, the fractions #; and h, are two free density
parameters in addition to those 13 mentioned before in Section 2.7.

4.1.3 Modelling steps

In order to understand the ability of our model to distinguish be-
tween different DM haloes for the real Sculptor, we first run a set of
models with a gNFW halo with central density slope y free. Then
two sets of models with different halo density slopes fixed, y =0
(cored halo) and y = 1 (cusped halo), are constructed to investigate
the difference in the models caused by different DM central density
slopes.

We use the same MCMC process here as presented in Sec-
tion 3.2.1. The MCMC post-burn distributions for the gNFW model
are shown in Fig. 11. We use the redefined d; = log(p?r?) param-
eter here to alleviate the degeneracy between potential parameters,
however the inner density slope y is still degenerate with d;.

The best-fitting parameters obtained for each DM potential are
presented in Table 4. Note that, for convenience, d has been con-
verted to rs, ¢ has been converted to inclination angle ¥, and ared
and A" have been converted to 8! and BP"°. In the gNFW model,
the DM density slope y is degenerate with d;, which corresponds
to the degeneracy between y and the DM scale radius rs, thus there
is large uncertainty in y. We will refer to these parameters in the
following sections when discussing the main results.

4.2 Results for Sculptor

4.2.1 Two-population spatial, chemical and velocity distributions

Following our treatment of the mock data, in the model for which
the best parameters were obtained, the stars can be separated via
probability as calculated by equation (8). The stars with P;"d > 0.5
(Pi’blue > 0.5) will be treated as red (blue) stars, while the stars with
P,-,bg > 0.5 are contaminant stars.

The models with different DM haloes predict different kinematics
for each population. For a single star i, its probabilities P,.'rEd and
P,-/blue are different from model to model, so the group of red and
blue stars are different from model to model. The best-fitting model
with a gNFW halo identifies 445 red stars and 653 blue stars, the
best-fitting model with a cored halo identifies 444 red stars and 646
blue stars and the best-fitting model with a cusped halo identifies
376 red stars and 696 blue stars.

Excluding ~70 stars being selected as contaminant stars for each
model, there are another ~50 stars for which neither the blue or red
probabilities are larger than 0.5 and so are excluded in what follows.

Fig. 12 shows the separation of the stars in the best-fitting cored
model. As in Fig. 5, R’ is the projected semimajor elliptical radius
but with g’ = 0.72 for Sculptor.

The red and blue histograms are directly constructed with the
model-identified red and blue stars (P! > 0.5 for red and P,""¢ >
0.5 for blue), while the grey histograms are for the contaminant stars.
The solid curves on the histograms are the model predictions for
each population. Because the MCMC chains have ‘memory’ of the
previous step, consecutive steps are not independent, thus all the
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Figure 11. MCMC post-burn distributions for our gNFW model of Sculptor. The scatter plots show the projected two-dimensional distributions, with the
points coloured by their likelihoods from blue (low) to red (high). The ellipses represent the 1o, 20 and 30 regions of the projected covariance matrix. The
histograms show the projected one-dimensional distributions. The parameters from left to right: DM scale density ps, ds = log(pfrf) where rg is the scale
radius, the inner density slope y, the intrinsic flattening g, velocity anisotropy parameter of the red population A™¢ and the blue population AU, rotation
parameter of the red population ™4 and the blue population ¢,

Table 4. The best-fitting parameters obtained by the MCMC process for three set of models with different DM haloes: gNFW halo with central density slope
y free, cored halo with y = 0 and cusped halo with y = 1. The parameters are presented in two rows for each model. First row from left to right: DM
scale density ps, DM scale radius r, central density slope y, the inclination angle ¥, the background fraction €, the fraction /; and &, of the RHB and BHB
surface number density profiles contributing to the red population, and the maximum likelihood Lyax. Second row from left to right: mean metallicity Z(r)ed
and metallicity spread a}ed, velocity anisotropy in the meridional plane ﬂzred and the rotation parameter x4 of the red population, as well as the corresponding
parameters for the blue population. Note that for convenience the recast parameter ds has been converted to rs, g has been converted to inclination angle and

274 and AP have been converted to ﬂfd and 6?'“.

DM psIMp pc_3] rs[pel y Inclination € percent hy hy Liax
Zaed O.%ed ;ed Kred Zglue oglue ?lue Kblue
eNFW 0.3+02 35015% 0.5+03 7514 0.8 +0.1 0.9 +0.1 0.1+0.1 23078
0.37 +0.01 0.079 £0.006 044701 —014+02 028240007  0.047£0006 0267019 o1+0.1
Cored 0.5+0.2 3701190 0 79110 0.8 +0.1 0.95 + 0.05 0.1£0.1 —23079
0.37 + 0.01 0.07 + 0.01 047709 02403 0281+£0006  0.049+£0005 036701 0.1+02
Cusped 0.08 £ 0.07 570179 1 7214 0.8+0.1 0.93 £ 0.06 0.1 £0.1 ~23079
0.37 £ 0.01 0.08 £ 0.01 048709 —02=£02 0.28 £ 0.01 0.047£0.005 0257513 01+0.1
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A discrete chemo-dynamical model of Sculptor 1129
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Figure 12. Top scatter panel: the projected semimajor elliptical radius R’
versus the relative metallicity ¥ Mg'. Bottom scatter panel: R versus relative
line-of-sight velocity v,. The grey points represent the contaminant stars.
Stars belonging to Sculptor are plotted with points coloured by PI.,red from
blue (low) to red (high). The redder colours represent stars with higher
probability to be in the red population, while the blue points represent
stars with higher probability to be in the blue population. The red and
blue histograms show the spatial, chemical and velocity distributions for
the stars identified as red and blue, while the grey histograms are for the
contaminant stars. The solid curves overplotted are the model predictions
for each population. The model-predicted number of stars per radial bin are
inferred from their surface number density profiles. Note that the velocity
dispersion actually varies with radius, while here we plot the global velocity
distribution for each population.

model curves are constructed with every two steps of the last 50
steps of the MCMC process.

We obtained surface number density fractions #; ~ 1 and h; ~ 0,
indicating that the model surface number density profile of the red
population is thus very close to that of the RHB stars, which are
more concentrated, while that of the blue population is dominated
by the shape of BHB stars, which are more extended. This assump-
tion in previous two-component dynamical models for Sculptor
(e.g. Battaglia et al. 2008; Amorisco & Evans 2012a), our model
thus shows is reasonable. The radial distributions of the model-
identified stars are consistent with the model predictions dN(R')
— inferred from the surface number density profiles X(R), with
dN(R") = dN(R)/2 = mRXE(R)dR — but not exactly the same, be-
cause the stars with discrete velocity measurements have selection
functions that vary with radius. The metallicity distributions of the
two populations show significant overlap but are clearly distinguish-
able. The red population has a higher metallicity spread than the
blue population.

The ~70 stars classified as contaminant stars are shown in grey
in Fig. 12. The background stars are selected out by the model nat-
urally. They are generally uniformly distributed in radius, and they
have a wide metallicity distribution (Zgg =0.57, szg =0.31) and
a wide velocity distribution (oé’ ¢ = 111 km s™"). These properties
are generally consistent with the input background parameters.

4.2.2 Two-population kinematics

The kinematics of the red and blue populations predicted by the
best-fitting models with cored and cusped DM haloes are shown
in Fig. 13. The best-fitting model with a gNFW halo is in between
that of a cored and a cusped halo. For each model, the upper panels
show the model-predicted mean velocity and velocity dispersion
maps for the red (top) and blue (bottom) populations. Each point
represents a star position coloured with the corresponding velocity
and velocity dispersion values.

We extract the mean velocity and velocity dispersion profiles to
see how well the model matches the data. We bin the data along the
major and minor axis, as we did in Section 3.3.1. R’ is the projected
semimajor/semiminor elliptical radius for the data binned along
major/minor axis, and R is the projected elliptical radius. Equally
populated radial bins are used. Due to the limited number of stars,
here we put 80 points in each bin with 40 points of overlap in bins
close to each other. The lower panels of Fig. 13 shows the binned
mean velocity and velocity dispersion profiles for the red (top) and
blue (bottom) populations. The model-identified red and blue stars
show distinct velocity dispersion profiles.

The red stars generally have a lower velocity dispersion than
the blue stars. In addition, the red stars have a lower dispersion
along the major axis than the minor axis (the red dots are lower
than the black star symbols), while the blue stars have a higher
dispersion along the major axis (the blue dots are higher than the
black star symbols). Although the cored model and the cusped
model identified the red and blue stars independently, the kinematic
properties of each population identified by the two different models
are consistent with each other.

We note that the cored DM halo models predict flat velocity
dispersion profiles for both populations, and the dispersion only
significantly decreases with radius for the red population along the
major axis. The cusped DM halo models always predict central
peaks for the velocity dispersions of both populations, the decline
of the velocity dispersion profiles with radius is more obvious.
The anisotropy of the red population is matched equally well by
the cored and cusped model, while the cusped model matches the
anisotropy of the blue population better than that of the cored model.
However, even though the model predictions from the cored and
cusped models are different, with the limited data points, we do
not have a statistically significant preference for either model. The
maximum likelihood of the cored and cusped models are equally
good.

A 1o significant internal rotation is revealed in the red stars as
matched by the models.

4.2.3 The mass profiles

The best mass profiles obtained by different DM halo models are
shown in Fig. 14 and compared with previous estimates. In the left-
hand panel, the black solid and dashed curves are the mass profiles
of the gNFW halo model with 1o uncertainty, the red curves are
those of the cored DM halo model and the blue curves are those of
the cusped DM halo model. The largest difference between the mass
profiles of the cored and cusped haloes is seen in the inner 200 pc
(~8.7 arcmin), where the gNFW model has a large uncertainty with
the central density slope converging to y = 0.5 £ 0.3. Hence, the
cored and cusped haloes are still not distinguishable statistically
with the present data.

The symbols represent the virial mass estimates obtained at dif-
ferent radii in previous studies by (Strigari et al. 2007, 2008; Walker
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Figure 13. Line-of-sight kinematics of the two populations in Sculptor, adopting a cored (left) or cusped (right) DM halo. Upper panels: model-predicted
mean velocity and velocity dispersion maps for the red (top) and blue (bottom) populations. Each point represents a star position coloured with the velocity
or velocity dispersion values, which are scaled as indicated by the corresponding colour bars. Lower panels: comparison of data and model mean velocity
and velocity dispersion profiles for the red (top) and blue (bottom) populations. The coloured (black) line represents the profile along the major (minor) axis

predicted by the best-fitting model, while the coloured dots (black stars) with error bars represent the data along the major (minor) axis after spatial binning of

the model-identified red or blue stars.

et al. 2009b; Amorisco & Evans 201 1; Walker & Pefiarrubia 2011).?
Most of the virial mass estimates are consistent with our mass pro-
files, and do not distinguish between a cored and a cusped DM
profile, except for Walker & Pefiarrubia (2011). The latter authors
used the two populations in Sculptor and obtained the mass at the
half-light radius of the metal-rich and metal-poor populations inde-
pendently and claimed that the cusped DM halo can be statistically
excluded when Sculptor is assumed to be spherical. However, when
an elliptical radius instead of spherical radius is used, Walker &

3 For Walker & Pefiarrubia (2011), we use the value in their fig. 10, not the
value in the table.

MNRAS 463, 1117-1135 (2016)

Pefiarrubia (2011) obtained y = 0.67)35 for Sculptor, which is still
consistent with our results.

Under the assumption of sphericity, the lower limit of the slope
obtained by Walker & Pefiarrubia (2011) is consistent with the
mass profile of the cored and the gNFW DM halo models we ob-
tained, but their virial mass estimate for the metal-poor population
is higher than the others. Different dynamical assumptions will af-
fect the separation of the two populations of stars, so as a result,
Walker & Pefiarrubia (2011) assigned fewer stars to the metal-
poor population than our model. The velocity dispersion obtained
and used by Walker & Pefarrubia (2011) to calculate the virial
masses were o0 = 6.5707 km s~ and o0 = 11.670¢ km s,
With the two population of stars separated by our model in
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Figure 14. Total enclosed mass profiles for Sculptor. Left-hand panel: the black solid and dashed curves are the mass profile for the gNFW halo with 1o
uncertainty, red curves are those for the cored DM halo and the blue curves are those for the cusped DM halo obtained by our discrete axisymmetric chemo-
dynamical models. The symbols represent the virial masses obtained at different radii from different papers as labelled. The dashed vertical line indicates the
position of the half-light radius ry,. Right-hand panel: again the black solid and dashed curves are our mass profiles for the gNFW halo, the yellow and green
thick curves are the mass profiles of the cored and cusped haloes, respectively, obtained by a two-component spherical Michie—King model (Amorisco & Evans
2012a), the orange line is obtained by a spherical Schwarzschild model with a gNFW DM halo (Breddels et al. 2013).

Section 4.2.1, the mean velocity dispersion is of*d =7.4 +
0.5 km s7! and o™ = 10.6 £ 0.5 km s~!, these values decrease
the slope of the mass profile to match the mass profile obtained by
our model.

In the right-hand panel of Fig. 14, our mass profile for a gNFW
halo is plotted, with the mass profiles from Amorisco & Evans
(2012a) for cored and cusped haloes (yellow and green curves).
They used a two-component Michie—King phase-space model to
fit the dispersion profiles of the metal-rich and metal-poor popula-
tions simultaneously. Their mass profiles for cored and cusped DM
haloes both match our corresponding estimates. The cored DM halo
is preferred in their model although the cusped DM halo is not ex-
cluded. Finally, the orange line represents the mass profile obtained
by a spherical Schwarzschild model with a gNFW halo (Breddels
et al. 2013), consistent with our estimates at 1o confidence.

5 DISCUSSION

5.1 Velocity anisotropy

It is still debated whether Sculptor is radially anisotropic or tangen-
tially anisotropic (e.g. Amorisco & Evans 2012a; Breddels et al.
2013). In a spherical model,

2 2
_ % 9%
207

B =1 , (14
is used to describe the velocity anisotropy of the system, where o> =

92— 52 52— 2 2 _ 2 ; :
vy — Uy, 0, = v; and o) = vy. In order to compare with previous

results, we transform the second velocity moments from cylindrical
polar coordinates to spherical coordinates and infer B, from our
axisymmetric models. In Fig. 15, the velocity anisotropy profiles
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Figure 15. The velocity anisotropy S, profiles as function of the intrinsic
radius . Red symbols represent that for the metal-rich and blue the metal-
poor population. The asterisks and diamonds are for the cored model and
cusped model, respectively, with the typical error bar shown in the top-left
corner. The red and blue triangle are the velocity anisotropy of the red and
blue population given by the two-component model of Amorisco & Evans
(2012a). The black solid and dashed lines are the velocity anisotropy from
the single-component Schwarzschild model with 1o error (Breddels et al.
2013). The two vertical dashed lines indicate 1 and 2 half-light radii.
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are calculated using the models within the 1o confidence level from
every second step of the last 50 steps of the MCMC process; the
error bars indicate the typical spread among these models. The
red and blue symbols represent the red and the blue populations.
The asterisks and diamonds are for the cored and cusped models,
respectively.

We find that the red population is nearly isotropic, while the
blue population is close to isotropic at small radius and becomes
mildly tangentially anisotropic outwards. Also the blue population
shows a higher degree of tangential anisotropy in the cusped model
than in the cored model. As shown in Fig. 13, the cusped model
matches the anisotropy of the blue stars better, thus we prefer the
higher tangential velocity anisotropy of the blue population from
the cusped model.

Battaglia et al. (2008) separated the two populations using hard
cuts on metallicity, and constructed a Jeans model for each popu-
lation independently. They found both populations to be consistent
with radial anisotropy. Amorisco & Evans (2012a) used the data
from Battaglia et al. (2008), and created a two-component Michie—
King phase-space model. They found thatin a cored DM halo model,
a nearly isotropic metal-poor stellar population is preferred (8, &~
0.1), whilst a cusped DM halo model favours a mild radial velocity
bias (8; &~ 0.25). The metal-rich population requires a high degree
of radial anisotropy (8, > 0.4), irrespective of the choice of DM
halo. Their results may be biased because no tangential velocity
anisotropy is allowed in Michie-King DFs. Even so, the metal-
rich population being more radial anisotropic than the metal-poor
population is consistent with our findings.

Breddels et al. (2013) created single-component orbit-based
Schwarzschild models of Sculptor. They binned the data in radius
assuming a single population, and showed that the LOS velocity
distribution of Sculptor deviates from a Gaussian distribution: the
velocity distributions for the bins at small radii have a narrow peak,
while the velocity distributions are more flat-topped for the bins
in the outskirts. They found mild radial anisotropy in the inner
0.1 kpc that dropped to highly tangential velocity anisotropy with
B: ~ —1.0 at all radii outside 0.2 kpc. However, our models indi-
cate that Sculptor clearly has two populations with different spatial
and velocity distributions. The red population is more spatially con-
centrated and has a smaller velocity dispersion. The more peaked
features in the inner bins in Breddels et al. (2013), and thus their
radial anisotropy in the inner region, are likely to be caused by the
combination of the two populations. The blue population dominates
at R > 0.3 kpc, so the tangential anisotropy we obtained for blue
population is consistent with the result of Breddels et al. (2013) at
this region.

The single-component Jeans models by Walker et al. (2009b)
and Lokas (2009) are also consistent with highly tangential velocity
anisotropy; they could also be dominated by the features of the blue
population, which is the dominant population and more spatially
extended.

In conclusion, we find that the red population is more radially
anisotropic (less tangential) than the blue population, which is con-
sistent with the previous two-component models, while the tangen-
tial anisotropy of the blue population we obtained is consistent with
the single-component orbit-based Schwarzschild model in the outer
parts, where the blue population dominates.

In our model, the accuracy of the recovery of the velocity
anisotropy is limited by the constant 8, we assumed for each pop-
ulation. As shown in Fig. 13, the blue stars tend to have a higher
degree of velocity anisotropy in the outer regions than the inner
regions, which is not matched by our model perfectly. If we have
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Figure 16. The variation of line-of-sight velocity v, along the azimuthal
angle (¢) from the major axis of the galaxy. The red asterisks/blue diamonds
represent the metal-rich/metal-poor population identified by the cored model
with « free. The thin red/blue dashed lines are the direct sinusoidal fit to the
data. The vertical dashed line indicates the position of ¢ = 180°.

more data points in the future, these features can be matched better
by allowing 8, to vary with radius.

Tangentially biased velocity anisotropy at large radii is a natural
result of the dynamical evolution of a stellar system within an
external tidal field, which induces a preferential loss of stars on
radial orbits (e.g. Takahashi & Lee 2000; Baumgardt & Makino
2003; Hurley & Shara 2012). The blue population of Sculptor is
older and extends to much larger radii (see Section 4.2), and, hence,
is more likely to be tangentially biased by tidal forces.

5.2 Internal rotation

The possible internal rotation of Sculptor was first discussed in
Battaglia et al. (2008). We detect a possible rotation of the red
population with x™¢ ~ 0.2. The variation of line-of-sight velocity
v, along the azimuthal angle ¢, increasing from the major axis
of the galaxy is shown in Fig. 16. Binning along ¢ is performed
with 80 stars per bin and the bins close to each other have 40 stars
of overlap. The red asterisks are the binned red stars and the blue
diamonds are the blue stars, which are separated with the criterion
of P4 > 0.6 as red stars and P,""® > 0.6 as blue stars. The cross-
contamination is more robustly removed in this separation, as the
scatter in the rotation, especially for the red population, is smaller
than that with stars separated with the criterion of 0.5 as used in
previous sections. Simple sinusoidal fits of v, = v,y Sin(¢ + ¢o)
to the binned data of the red stars yield the thin red dashed
curves with ¢o = 253° £ 12° and v = 1.1 & 0.1 km s/,
which corresponds to vy /oo = (1.1 £ 0.1)/7.4 = 0.15 £+ 0.02.
The maximum rotation occurs at ¢ ~ 0° and ¢ ~ 180°, thus
the rotation is around the minor axis. For the blue stars, we get
¢o = 160° £ 8°, so that the rotation is around a different axis. With
Umax = 0.9 £ 0.1 km s~ 'as indicated by the thin blue dashed curves,
we get Unmax /00 = (0.9 £ 0.1)/10.6 = 0.09 & 0.01. These stars are
separated by their likelihood in the best-fitting models, the errors of
Umax /0o from the curve fitting is small.

However, stars are separated differently in different models, so
the overall error of v,y /0 is a combination of the statistical error
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from the MCMC process and the curve-fitting error, with the former
one dominating. We randomly choose 100 models in the last steps of
the MCMC process, identify the two populations by their likelihood
in each of the model, and do the curve fitting for the resulting red
and blue populations. We obtain vy, /o9 = 0.15 &= 0.15 for the red
population and vpax /09 = 0.09 £ 0.15 for the blue population.

The binning reduces the fluctuation and increases the significance
of the rotation. The reduced yx? of the best sinusoidal fit to the red
population is 1.8, while the reduced x? of the best fit to the blue
population is 4.3. If we assume the blue stars have the same rotation
as the red stars, the reduced x? of the blue stars will significantly
increase to 27, thus indicating that the blue population is not well
described by the rotation profile of the red population.

The perspective rotation caused by global PM could be the same
order as the rotation of the red population as we obtain here (Walker,
Mateo & Olszewski 2008). However, the perspective rotation caused
by the global PM should be the same for the red and blue population,
which is not the case here. The rotation of the red population is thus
likely to be true intrinsic rotation.

Could the rotations be artificially introduced by the model?
We further test this by creating a new model without rotation
(k™ = ke = 0 fixed) as shown in Appendix B, the rotation
pattern of the red population still exists in the stars identified by the
zero-rotation model, thus it is not likely to be artificially introduced.

As we tested with the mock data, when there is such a weak
intrinsic rotation in the red population, we could only recover it with
1o significance, and the model is likely to slightly underestimate
the rotation. Therefore, the real rotation in Sculptor may be stronger
than we have estimated here. An increased sample with ~6000 data
points could significantly improve the statistical results. As the
amplitude of the rotation is smaller than the typical velocity error
of a single star, more accurate velocity measurements will also
improve the inference of intrinsic rotation.

6 CONCLUSIONS

We have presented a new chemo-dynamical modelling technique
that separates multiple populations while simultaneously modelling
their dynamics. This is achieved by extending the single-component
discrete Jeans modelling of Watkins et al. (2013) to include multiple
populations, each with different spatial, chemical and dynamical
properties. The probability of each star is a combination of its
probability to be in either of the populations or to be part of the
explicitly modelled contamination.

We apply this modelling technique to the dSph galaxy Sculptor
and find that:

(i) We are able to identify the kinematics of multiple populations.
The stars are naturally separated into two populations. The metal-
rich (red) population is more spatially concentrated and has smaller
velocity dispersion.

(ii) Assuming axisymmetry, a gNFW halo with inner density
slope y left free converges to y = 0.5 £ 0.3, in between a core of
y =0and a cusp y = 1. We cannot exclude either the cored profile
or the cusped profile at better than 1o significance with the current
data.

(iii) The metal-rich population is nearly isotropic. The metal-
poor population is close to isotropic in the inner regions and is
moderately tangentially anisotropic in the outer regions.

(iv) We detect a 1o significant intrinsic rotation of the red popu-
lation with v,y /oo = 0.15 £ 0.15.

Our test using mock data show that to further constrain the inner
density slope and the possible intrinsic rotation, we need more
and/or better data points. A sample with ~6000 data points we
are using could reduce the uncertainties by half and so address the
‘core’ versus ‘cusp’ problem under the assumption of axisymmetry.

The discrete chemo-dynamical models that we have presented
here are both powerful and flexible and can be applied to many
other multiple population systems for which discrete data are avail-
able. For example, giant elliptical (gE) galaxies usually have at
least two populations of globular clusters (GCs) that are expected
to have different dynamical properties due to their different for-
mation histories. Not only will our method be able to separate the
different GC populations, but its flexibility will allow us to in-
clude even more populations (such as planetary nebulae) and also
to include integrated stellar kinematics from the inner regions. We
have also applied our models to the gE galaxy NGC 5846 (Zhu
et al. 2016), which shows that our method is able to simultaneously
chemo-dynamically separate multiple populations, investigate the
dynamical properties of multiple tracers, and constrain the under-
lying gravitational potential.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online ver-
sion of this article:

mock_metal-poor_cored.txt
mock_metal-poor_cusp.txt
mock_metal-rich_cored.txt
mock_metal-rich_cusp.txt
(http://www.mnras.oxfordjournals.org/lookup/suppl/doi:
10.1093/mnras/stw2081/-/DC1).

Please note: Oxford University Press is not responsible for the
content or functionality of any supporting materials supplied by
the authors. Any queries (other than missing material) should be
directed to the corresponding author for the article.

APPENDIX A: THE DEFINITION OF
ROTATION IN THE JEANS MODELS

Cappellari (2008) adopted a rotation parametrization,
= o\’
(w7 = x; (1031, = 3, (A1)

for each Gaussian component j. The rotation of the model is then
obtained by summing over the contributions from all Gaussian com-
ponents:

VU, = sgn(w) x |w]'/?, (A2)
with
N PE— JE—
0= sente)) x ? x ([VE]; = [vF];). (A3)
j=1

where sgn(x) indicates the sign of x. The above definition assumes
that ([vé]/— — [”%e]j) > ( for all Gaussian components, thus the sign
of k; determines the rotation direction of that Gaussian component
and directly contributes to .

However, the variation of the velocity anisotropy 8, combined
with the properties of underlying potential may cause ([vé] =

[E] ;) to be either positive or negative. In this case, the followed
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calculations of rotation in equation 38 of (Cappellari 2008, and also
equation A59 and A60 in Watkins et al. 2013) actually takes:

N
w=v Z Sgn(Kj)Sgn<[Ué]j - [U%e]j) x i x |[vgl; — [vgljl.
=1

(A4)

Thus the sign of [v;]; — [v%]; also contributes to the rotation di-
rection, and so «; loses its control over the rotation direction in an
inexplicit way. At the same time, the velocity anisotropy S, which
affects the sign of ([vé] = [U%z] ), is involved in the determination
of rotation direction, and thus becomes degenerate with « ;.

With the old definition of rotation following Cappellari (2008)
and Watkins et al. (2013), the best model, we get among a few sets
of models with different «** and «", is with £*! = k" = 0.3.
Both cored and cusped halo models predict counter rotatlon for the
blue and red populations and the rotation directions of all Gaussian
components of the red population are flipped compared to the sign of
Kre“ mostly due to its radial anisotropy (/3’“l > (). Sometimes only
the rotation directions of some Gaussian components are flipped
compared to «;, which causes a smaller rotation in total or even a
counter-rotation core in the model even with the same «; given.

The models fit the data well in this case, although with a likelihood
worse than we obtained in the main part of the paper. But, with the
complicated coupling between velocity anisotropy parameters and
rotation parameters, it may be that a poor set of rotation parameters

1! and " were chosen. When we let «** and < be constant
for all Gaussmn components and free, the models can hardly con-
verge to match the rotations because of the degeneracy between S,
and k.

Because of these disadvantages, in the paper, we chose to redefine
the rotation with:

N J— _
=Y sen(k;) x k7 x |31, — [V3];]. (AS)
J=1

Correspondingly, the mean velocities about the projected coor-
dinates change, equation A59 and A60 in Watkins et al. (2013)
become

1v; (x',y) =2VnG /oo F. x sgn(@) x |G|'* d7’ (A6)
with

N
G=v Z sgn(k;)k;G; (A7)

j=1
where T represents X, y' and z’ and F; = Rf; which remains the
same as in Watkins et al. (2013). The only thing that changes is

D
/ qu/pOka(u)” dul. (A8)
0 k=1

1 —Cu?

where N is the total number of luminous Gaussians of the tracer
number density, M is the total number of potential Gaussians. We
take the absolute value of the integration in G, and thus «; regains
its control over the rotation direction of each Gaussian component.
The calculations become more expensive as N integrations over u
will be needed inside the integration of 7" in equation (A6).

APPENDIX B: MODELS WITHOUT ROTATION

In Section 5.2, we showed that the red and blue populations are
counter-rotating when they are separated by the chemo-dynamical
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Figure B1. The same as Fig. 16, but with the red and blue stars identified by
the zero-rotation model. The same rotation pattern of the red population still
exists, although with the amplitude suppressed by the zero-rotation model.

models with rotation. To verify this finding, we also ran models with-
out rotation (with ™ = «®“¢ = 0 fixed). We separate the red and
blue stars identified in this zero-rotation model as shown in Fig. B1.
Simple sinusoidal (v, = vmax Sin(¢ 4 ¢y)) fits to the red stars yield

the red curves with ¢y = 268° & 12 and vy = 0.8 £ 0.1 km s},
which corresponds to vy /09 = 0.8/7.4 = 0.11. The maximum
rotation occurs at ¢ = 0° and ¢ = 180°, thus the rotation is about
the minor axis. The same rotation pattern as shown in Section 5.2
exists in the red stars identified by the zero-rotation model. How-
ever, the zero-rotation model suppresses the possible rotations in
each population, thus the amplitude of the rotation is decreased in
the red population as identified by zero-rotation model.

This test supports our results that the rotation pattern (at least in
the red stars shown in Section 5.2) is not likely to be artificially
introduced by our model.

This paper has been typeset from a TX/IATEX file prepared by the author.
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