62 research outputs found
Interleukin-6 stimulates gene expression of extracellular matrix components in bovine mesangial cells in culture
The effect of interleukin-6 (IL-6) on gene expression of extracellular matrix components in bovine mesangial cells in culture has been investigated. IL-6 (100 U/ml) time dependently increased the steady state expression of mRNAs coding for α1 collagen III and fibronectin, both transcripts being 1.5- and 2.5-fold higher than basal level at 24 and 48 h, respectively. In contrast, IL-6 stimulated laminin mRNA expression only after 48 h incubation (2.5-fold upon basal level). These results suggest that IL-6 could favour glomerular matrix accumulation thus contributing to the development of glomerulosclerosis
Clues to Nuclear Star Cluster Formation from Edge-on Spirals
We find 9 nuclear cluster candidates in a sample of 14 edge-on, late-type
galaxies observed with HST/ACS. These clusters have magnitudes (M_I ~ -11) and
sizes (r_eff ~ 3pc) similar to those found in previous studies of face-on,
late-type spirals and dE galaxies. However, three of the nuclear clusters are
significantly flattened and show evidence for multiple, coincident structural
components. The elongations of these three clusters are aligned to within 10
degrees of the galaxies' major axes. Structurally, the flattened clusters are
well fit by a combination of a spheroid and a disk or ring. The nuclear cluster
disks/rings have F606W-F814W (~V-I) colors 0.3-0.6 magnitudes bluer than the
spheroid components, suggesting that the stars in these components have ages <
1 Gyr. In NGC 4244, the nearest of the nuclear clusters, we further constrain
the stellar populations and provide a lower limit on the dynamical mass via
spectroscopy. We also present tentative evidence that another of the nuclear
clusters (in NGC 4206) may also host a supermassive black hole. Based on our
observational results we propose an in situ formation mechanism for nuclear
clusters in which stars form episodically in compact nuclear disks, and then
lose angular momentum or heat vertically to form an older spheroidal structure.
We estimate the period between star formation episodes to be 0.5 Gyr and
discuss possible mechanisms for tranforming the disk-like components into
spheroids. We also note the connection between our objects and massive globular
clusters (e.g. Cen), UCDs, and SMBHs. (Abridged)Comment: Accepted for publication in the A
The construction of non-spherical models of quasi-relaxed stellar systems
Spherical models of collisionless but quasi-relaxed stellar systems have long
been studied as a natural framework for the description of globular clusters.
Here we consider the construction of self-consistent models under the same
physical conditions, but including explicitly the ingredients that lead to
departures from spherical symmetry. In particular, we focus on the effects of
the tidal field associated with the hosting galaxy. We then take a stellar
system on a circular orbit inside a galaxy represented as a "frozen" external
field. The equilibrium distribution function is obtained from the one
describing the spherical case by replacing the energy integral with the
relevant Jacobi integral in the presence of the external tidal field. Then the
construction of the model requires the investigation of a singular perturbation
problem for an elliptic partial differential equation with a free boundary, for
which we provide a method of solution to any desired order, with explicit
solutions to two orders. We outline the relevant parameter space, thus opening
the way to a systematic study of the properties of a two-parameter family of
physically justified non-spherical models of quasi-relaxed stellar systems. The
general method developed here can also be used to construct models for which
the non-spherical shape is due to internal rotation. Eventually, the models
will be a useful tool to investigate whether the shapes of globular clusters
are primarily determined by internal rotation, by external tides, or by
pressure anisotropy.Comment: AASTeX v5.2, 37 pages with 2 figures, accepted for publication in The
Astrophysical Journa
Gravitating discs around black holes
Fluid discs and tori around black holes are discussed within different
approaches and with the emphasis on the role of disc gravity. First reviewed
are the prospects of investigating the gravitational field of a black
hole--disc system by analytical solutions of stationary, axially symmetric
Einstein's equations. Then, more detailed considerations are focused to middle
and outer parts of extended disc-like configurations where relativistic effects
are small and the Newtonian description is adequate.
Within general relativity, only a static case has been analysed in detail.
Results are often very inspiring, however, simplifying assumptions must be
imposed: ad hoc profiles of the disc density are commonly assumed and the
effects of frame-dragging and completely lacking. Astrophysical discs (e.g.
accretion discs in active galactic nuclei) typically extend far beyond the
relativistic domain and are fairly diluted. However, self-gravity is still
essential for their structure and evolution, as well as for their radiation
emission and the impact on the environment around. For example, a nuclear star
cluster in a galactic centre may bear various imprints of mutual star--disc
interactions, which can be recognised in observational properties, such as the
relation between the central mass and stellar velocity dispersion.Comment: Accepted for publication in CQG; high-resolution figures will be
available from http://www.iop.org/EJ/journal/CQ
Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks
The most efficient energy sources known in the Universe are accretion disks.
Those around black holes convert 5 -- 40 per cent of rest-mass energy to
radiation. Like water circling a drain, inflowing mass must lose angular
momentum, presumably by vigorous turbulence in disks, which are essentially
inviscid. The origin of the turbulence is unclear. Hot disks of electrically
conducting plasma can become turbulent by way of the linear magnetorotational
instability. Cool disks, such as the planet-forming disks of protostars, may be
too poorly ionized for the magnetorotational instability to occur, hence
essentially unmagnetized and linearly stable. Nonlinear hydrodynamic
instability often occurs in linearly stable flows (for example, pipe flows) at
sufficiently large Reynolds numbers. Although planet-forming disks have extreme
Reynolds numbers, Keplerian rotation enhances their linear hydrodynamic
stability, so the question of whether they can be turbulent and thereby
transport angular momentum effectively is controversial. Here we report a
laboratory experiment, demonstrating that non-magnetic quasi-Keplerian flows at
Reynolds numbers up to millions are essentially steady. Scaled to accretion
disks, rates of angular momentum transport lie far below astrophysical
requirements. By ruling out purely hydrodynamic turbulence, our results
indirectly support the magnetorotational instability as the likely cause of
turbulence, even in cool disks.Comment: 12 pages and 4 figures. To be published in Nature on November 16,
2006, available at
http://www.nature.com/nature/journal/v444/n7117/abs/nature05323.htm
Consensus protocol for EEG and amplitude-integrated EEG assessment and monitoring in neonates
The aim of this work is to establish inclusive guidelines on electroencephalography (EEG) applicable to all neonatal intensive care units (NICUs). Guidelines on ideal EEG monitoring for neonates are available, but there are significant barriers to their implementation in many centres around the world. These include barriers due to limited resources regarding the availability of equipment and technical and interpretive round-the-clock personnel. On the other hand, despite its limitations, amplitude-integrated EEG (aEEG) (previously called Cerebral Function Monitor [CFM]) is a common alternative used in NICUs. The Italian Neonatal Seizure Collaborative Network (INNESCO), working with all national scientific societies interested in the field of neonatal clinical neurophysiology, performed a systematic literature review and promoted interdisciplinary discussions among experts (neonatologists, paediatric neurologists, neurophysiologists, technicians) between 2017 and 2020 with the aim of elaborating shared recommendations. A consensus statement on videoEEG (vEEG) and aEEG for the principal neonatal indications was established. The authors propose a flexible frame of recommendations based on the complementary use of vEEG and aEEG applicable to the various neonatal units with different levels of complexity according to local resources and specific patient features. Suggestions for promoting cooperation between neonatologists, paediatric neurologists, and neurophysiologists, organisational restructuring, and teleneurophysiology implementation are provided
Planetary Rings
Planetary rings are the only nearby astrophysical disks, and the only disks
that have been investigated by spacecraft. Although there are significant
differences between rings and other disks, chiefly the large planet/ring mass
ratio that greatly enhances the flatness of rings (aspect ratios as small as
1e-7), understanding of disks in general can be enhanced by understanding the
dynamical processes observed at close-range and in real-time in planetary
rings. We review the known ring systems of the four giant planets, as well as
the prospects for ring systems yet to be discovered. We then review planetary
rings by type. The main rings of Saturn comprise our system's only dense broad
disk and host many phenomena of general application to disks including spiral
waves, gap formation, self-gravity wakes, viscous overstability and normal
modes, impact clouds, and orbital evolution of embedded moons. Dense narrow
rings are the primary natural laboratory for understanding shepherding and
self-stability. Narrow dusty rings, likely generated by embedded source bodies,
are surprisingly found to sport azimuthally-confined arcs. Finally, every known
ring system includes a substantial component of diffuse dusty rings. Planetary
rings have shown themselves to be useful as detectors of planetary processes
around them, including the planetary magnetic field and interplanetary
impactors as well as the gravity of nearby perturbing moons. Experimental rings
science has made great progress in recent decades, especially numerical
simulations of self-gravity wakes and other processes but also laboratory
investigations of coefficient of restitution and spectroscopic ground truth.
The age of self-sustained ring systems is a matter of debate; formation
scenarios are most plausible in the context of the early solar system, while
signs of youthfulness indicate at least that rings have never been static
phenomena.Comment: 82 pages, 34 figures. Final revision of general review to be
published in "Planets, Stars and Stellar Systems", P. Kalas and L. French
(eds.), Springer (http://refworks.springer.com/sss
MIKiS: The Multi-instrument Kinematic Survey of Galactic Globular Clusters. I. Velocity Dispersion Profiles and Rotation Signals of 11 Globular Clusters
We present the first results of the Multi-Instrument Kinematic Survey of
Galactic Globular Clusters, a project aimed at exploring the internal
kinematics of a representative sample of Galactic globular clusters from the
radial velocity of individual stars, covering the entire radial extension of
each system. This is achieved by exploiting the formidable combination of
multi-object and integral field unit spectroscopic facilities of the ESO Very
Large Telescope. As a first step, here we discuss the results obtained for 11
clusters from high and medium resolution spectra acquired through a combination
of FLAMES and KMOS observations. We provide the first kinematical
characterization of NGC 1261 and NGC 6496. In all the surveyed systems, the
velocity dispersion profile declines at increasing radii, in agreement with the
expectation from the King model that best fits the density/luminosity profile.
In the majority of the surveyed systems we find evidence of rotation within a
few half-mass radii from the center. These results are in general overall
agreement with the predictions of recent theoretical studies, suggesting that
the detected signals could be the relic of significant internal rotation set at
the epoch of the cluster's formation.Comment: 39 pages, 12 figures, ApJ, in pres
Cassini Radio Science
Cassini radio science investigations will be conducted both during the cruise (gravitational wave and conjunction experiments) and the Saturnian tour of the mission (atmospheric and ionospheric occultations, ring occultations, determinations of masses and gravity fields). New technologies in the construction of the instrument, which consists of a portion on-board the spacecraft and another portion on the ground, including the use of the Ka-band signal in addition to that of the S- and X-bands, open opportunities for important discoveries in each of the above scientific areas, due to increased accuracy, resolution, sensitivity, and dynamic range.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43765/1/11214_2004_Article_1436.pd
- …