2,720 research outputs found
Low-noise, high-strength, spiral-bevel gears for helicopter transmissions
Improvements in spiral-bevel gear design were investigated to support the Army/NASA Advanced Rotorcraft Transmission program. Program objectives were to reduce weight by 25 percent, reduce noise by 10 dB, and increase life to 5000 hr mean-time-between-removal. To help meet these goals, advanced-design spiral-bevel gears were tested in an OH-58D helicopter transmission using the NASA 500-hp Helicopter Transmission Test Stand. Three different gear designs tested included: (1) the current design of the OH-58D transmission except gear material X-53 instead of AISI 9310; (2) a higher-strength design the same as the current but with a full fillet radius to reduce gear tooth bending stress (and thus, weight); and (3) a lower-noise design the same as the high-strength but with modified tooth geometry to reduce transmission error and noise. Noise, vibration, and tooth strain tests were performed and significant gear stress and noise reductions were achieved
Tooth Contact Shift in Loaded Spiral Bevel Gears
An analytical method is presented to predict the shifts of the contact ellipses of spiral bevel gear teeth under load. The contact ellipse shift is the motion of the tooth contact position from the ideal pitch point to its location under load. The shifts are due to the elastic motions of the gear and pinion supporting shafts and bearings. The calculations include the elastic deflections of the gear shafts and the deflections of the four shaft bearings. The method assumes that the surface curvature of each tooth is constant near the unloaded pitch point. Results from these calculations will help designers reduce transmission weight without seriously reducing transmission performance
Application of Face-Gear Drives in Helicopter Transmissions
The use of face gears in helicopter transmissions was explored. A light-weight, split torque transmission design utilizing face gears was described. Face-gear design and geometry were investigated. Topics included tooth generation, limiting inner and outer radii, tooth contact analysis, contact ratio, gear eccentricity, and structural stiffness. Design charts were developed to determine minimum and maximum face-gear inner and outer radii. Analytical study of transmission error showed face-gear drives were relatively insensitive to gear misalignment, but tooth contact was affected by misalignment. A method of localizing bearing contact to compensate for misalignment was explored. The proper choice of shaft support stiffness enabled good load sharing in the split torque transmission design. Face-gear experimental studies were also included and the feasibility of face gears in high-speed, high-load applications such as helicopter transmissions was demonstrated
Face-gear drives: Design, analysis, and testing for helicopter transmission applications
The use of face-gears in helicopter transmissions was explored. A light-weight, split-torque transmission design utilizing face-gears is described. Face-gear design and geometry were investigated. Topics included tooth generation, limiting inner and outer radii, tooth contact analysis, contact ratio, gear eccentricity, grinding, and structural stiffness. Design charts were developed to determine minimum and maximum face-gear inner and outer radii. An analytical study showed that the face-gear drive is relatively insensitive to gear misalignment with respect to transmission errors, but the tooth contact is affected by misalignment. A method of localizing the bearing contact to permit operation with misalignment was explored. Two new methods for grinding of the face-gear tooth surfaces were also investigated. The proper choice of shaft stiffness enabled good load sharing in the split-torque transmission design. Face-gear experimental studies were also conducted. These tests demonstrated the feasibility of face-gears in high-speed, high-load applications such as helicopter transmissions
Modular Acquisition and Stimulation System for Timestamp-Driven Neuroscience Experiments
Dedicated systems are fundamental for neuroscience experimental protocols
that require timing determinism and synchronous stimuli generation. We
developed a data acquisition and stimuli generator system for neuroscience
research, optimized for recording timestamps from up to 6 spiking neurons and
entirely specified in a high-level Hardware Description Language (HDL). Despite
the logic complexity penalty of synthesizing from such a language, it was
possible to implement our design in a low-cost small reconfigurable device.
Under a modular framework, we explored two different memory arbitration schemes
for our system, evaluating both their logic element usage and resilience to
input activity bursts. One of them was designed with a decoupled and latency
insensitive approach, allowing for easier code reuse, while the other adopted a
centralized scheme, constructed specifically for our application. The usage of
a high-level HDL allowed straightforward and stepwise code modifications to
transform one architecture into the other. The achieved modularity is very
useful for rapidly prototyping novel electronic instrumentation systems
tailored to scientific research.Comment: Preprint submitted to ARC 2015. Extended: 16 pages, 10 figures. The
final publication is available at link.springer.co
Determination of Turboprop Reduction Gearbox System Fatigue Life and Reliability
Two computational models to determine the fatigue life and reliability of a commercial turboprop gearbox are compared with each other and with field data. These models are (1) Monte Carlo simulation of randomly selected lives of individual bearings and gears comprising the system and (2) two-parameter Weibull distribution function for bearings and gears comprising the system using strict-series system reliability to combine the calculated individual component lives in the gearbox. The Monte Carlo simulation included the virtual testing of 744,450 gearboxes. Two sets of field data were obtained from 64 gearboxes that were first-run to removal for cause, were refurbished and placed back in service, and then were second-run until removal for cause. A series of equations were empirically developed from the Monte Carlo simulation to determine the statistical variation in predicted life and Weibull slope as a function of the number of gearboxes failed. The resultant L(sub 10) life from the field data was 5,627 hr. From strict-series system reliability, the predicted L(sub 10) life was 774 hr. From the Monte Carlo simulation, the median value for the L(sub 10) gearbox lives equaled 757 hr. Half of the gearbox L(sub 10) lives will be less than this value and the other half more. The resultant L(sub 10) life of the second-run (refurbished) gearboxes was 1,334 hr. The apparent load-life exponent p for the roller bearings is 5.2. Were the bearing lives to be recalculated with a load-life exponent p equal to 5.2, the predicted L(sub 10) life of the gearbox would be equal to the actual life obtained in the field. The component failure distribution of the gearbox from the Monte Carlo simulation was nearly identical to that using the strict-series system reliability analysis, proving the compatibility of these methods
An investigation of the nature and reactivity of the carbonaceous species deposited on mordenite by reaction with methanol
An investigation of the nature of the carbonaceous species deposited upon mordenite by reaction with methanol has been undertaken. The nature of the species has been shown to be a strong function of both temperature and time on stream. Upon reaction at 300 degrees C a range of alkyl and aromatic species, consistent with the development of an active hydrocarbon pool, are evident and time on stream studies have shown that these are developed within 5 min. Upon reaction at 500 degrees C, a narrower range of hydrogen deficient aromatic species is evident. Thermal volatilisation analysis (TVA), not previously applied to the study of coked zeolites, is shown to be complementary to the more commonly applied C analysis, C-13 MAS NMR and TGA techniques
Lignées de cotonnier évaluées par sélection participative au Bénin
la sélection massale réalisée dans une population, issue d'un croisement panmictique avec 14 génotypes en 1996, a permis après quatre années aux producteurs sélectionneurs et chercheurs la mise au point des populations de coton. Les essais ont été conduits dans quatre localités, Kandi, Djougou, Savalou chez les producteurs et sur le Centre Permanent d'Expérimentation d'Okpara avec les chercheurs. Dans chaque localité, un producteur sélectionneur s'était entouré d'un groupe de producteurs pour la réalisation de l'essai. En 2002, une modification introduite dans la méthode de sélection a permis d'obtenir un certain nombre de lignées sur chacun des sites. les 10 meilleures lignées de chaque site ont été mises dans un essai de bloc de Fisher a 2 répétitions et évaluées par la méthode de sélection participative en 2004 au Centre Permanent d'Expérimentation d'Okpara. Des résultats de l'évaluation visuelle basée sur les critères morphologiques, les lignées Okpara 3-5, Kandi 3-4, Djougou 8-5 ont été retenues surtout pour leur précocité et leur taille moyenne pendant que la lignée Savalou 4-33 reste la plus détestée de tous les participants en particulier pour sa tardivité. Mais les résultats des récoltes totales ont montré le caractére productif de Savalou 4-33. Ces lignées seront mises en essais multi locaux les campagnes a venir pour suivre leur comportement dans les différentes zones agro écologiques du Bénin. (Résumé d'auteur
The thermo-oxidative degradation of poly(4-methylstyrene) and its relationship to flammability
Polystyrene and poly(4-methylstyrene) have very similar chemical structures with the only differences being the para methyl group of poly(4-methylstyrene). This methyl group is susceptible to oxidation at elevated temperatures. Here we demonstrate that it is possible to introduce oxidative cross-links to poly(4-methylstyrene), via the para methyl group, by thermal oxidative treatment at 230 °C, 250 °C and 270 °C in the absence of catalyst, leading to a material with markedly modified thermal degradation chemistry. Thermal gravimetric analysis and differential scanning calorimetry were used to characterise and compare untreated and post-oxidised materials and established that as the temperature of pre-treatment was increased, the subsequent thermal stability of the material increased. FTIR, NMR and microanalysis indicated that after the thermal oxidative pre-treatment ether cross-links are present alongside new oxygen containing functional groups such as aldehydes, carboxylic acids and hydroxyl groups. Finally, data obtained from pyrolysis combustion flow calorimetry confirmed that as the number of oxidative cross-links increase, a reduction in the polymer's flammability as assessed by heat release data is observed
Between trust and distrust in research with participants in conflict context
Trust is often treated as a binary where research participants either trust researchers or not, whereas in reality trust is multi-layered. Drawing on 10 months of fieldwork working with internally displaced persons and their non-displaced neighbours in rural Colombia, this article provides a more nuanced discussion of trust in research. It identifies ways in which participants are vulnerable, provides fieldwork strategies to address these vulnerabilities, and questions the assumption that extended time spent in the field necessarily results in greater trust. It argues that such beliefs underestimate the complexity of conflict and post-conflict research contexts where political and social relations are often unstable. Demonstrating that trust may be compartmentalised, and that trust and distrust can coexist, it proposes that the question researchers should ask themselves is not whether participants trust us or not but rather in what capacity and to what degree they (dis)trust us and what influences their level of trust
- …
