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ABSTRACT

The use of face gears in helicopter transmissions was explored.

A llght-welght, split torque transmission design utilizing face gears

was described. Face-gear design and geometry were investigated.

Topics included tooth generation, limiting inner and outer radii,

tooth contact analysis, contact ratio, gear eccentricity, and struc-

tural stiffness. Design charts were developed to determine minimum

and maximum face-gear inner and outer radii. Analytical study of

transmission error showed face-gear drives were relatively insen-

sitive to gear misalignment, but tooth contact was affected by mis-

alignment. A method of localizing bearing contact to compensate

for misalignment was explored. The proper choice of shaft support

stiffness enabled good load sharing in the split torque transmission

design. Face-gear experimental studies were also included and the

feasibility of face gears in high-speed, high-load applications such as

helicopter transmissions was demonstrated.

INTRODUCTION

The Advanced Rotorcraft Transmission (ART) program is an

Army funded, joint Army/NASA program to develop and demon-

strate lightweight_ quiet, durable drivetrain systems for next genera-

tion rotorcraft (Bill, 1990). One contract team participant,

McDonnell Douglas Helicopter Company (MDHC)/Lucas Western

Incorporated, developed a novel split torque ART configuration

using face gears (Bossier and I-Ieath, 1990, 1991). The geometry and

design of face gears and computerized simulation of their meshing

have been developed by another member of the team, the University

of Illinois at Chicago.

Manufacturing of face gears was proposed many years ago by

the Fellows Corporation. Face gears have had widespread use in

low power applications but have not had much development of

design and manufacturing practice for high power use.

The theory of face-gear drives has not been developed suffi-

ciently for the needs of the designers and manufacturers. Publi-

cations in this area in English by E. Buckingham (1949), and

D.W. Dudley (1962) can be considered only as a brief description

of face-gear drives. J. Davidov (1950), and F.L. Litvin and

L.J. LiBurkin (1968) have published the results of their investiga-

tion of face-gear drives in Russian literature, but these works are
not familiar in tile western world.

The advantages of face-gear drives are: (1) reduced sensitivity

of the bearing contact to gear misalignment, (2) reduced level of

noise due to the very low level of transmission errors, and (3) more

favorable conditions of transfer of load from one pair of teeth to the

next pair of teeth. Statement (3) is based on the advantage of in-

volute gearing to have a common normal for those teeth that are

finishing and starting the meshing.

This paper shows that with proper design face-gear drives can

find a successful application in high power applications. The per-

formed research enables provision of sufficient tooth length and

localized bearing contact. The results of computerized simulation of

meshing and bearing contact and experimental test of face-gear

drives confirm that such drives can be successfully applied in power
transmissions.

The paper covers application of face-gear drives in helicopter

transmission. The advantage of this application is the possibility to

split the torque between two face-gear drives. The design of face-

gear drives, simulation of meshing and bearing contact, have been

computerized and supported by computer programs and design

charts. The split of torque has been confirmed by finite element

structural analysis. A set of face-gear drives has been successflllly
tested at NASA Lewis Research Center.

SPLIT TORQUE DESIGN

The idea of the split of torque is illustrated with Fig. 1. Fig-

ure l(a) shows the alternative version of the torque split by two spi-

ral bevel pinions, a and b, designed as one rigid body. Figure l(b)

shows the second version of the split of torque when a single spur

(or helical) pinion is in mesh with two face gears. The advantage

of the second version is that the transmitting forces transmit a

reduced load on the bearings in comparison with the version shown

in Fig. l(a). A second advantage is that the pinion is a conven-

tional spur (or helical) gear compared to a complex spiral bevel

design with two pinions.

The general configuration of the MDHC/Lucas ART design is

illustrated conceptually in Fig. 2, although there have been some

changes in details since this drawing was made. There are two
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Figure 1 .--Split-torque configurations.

predicted payoff is greatly reduced weight and cost compared to
conventional design.

The pinion which serves the two face gears is a conventional

spur gear with an even number of teeth. If the spur gears were
rigidly located between the two face gears, precise torque splitting

would be very unlikely. The spur gear has a free-floating mount

which allows self-centering between the two face gears. It will be

shown analytically (see next section) that precise torque splitting

(with =kl.0%) will take place.

More importantly, torque splitting between two driven gears by

a free-floating spur-gear pinion has been used for many years in

truck transmissions. The first known truck application was the ex-

perimental Road Ranger transmission produced by the Fuller Trans-

mission Division of the Eaton Manufacturing Company in 1961.

Truck transmissions using this principle have been in production

since 1963. In addition to accurate torque splitting, it was found

that gear noise was reduced and gear life was increased. Thus the

use of a free floating pinion as a torque-splitting device is well
substantiated.

FINITE ELEMENT STRUCTURAL ANALYSIS FOR THE

SPLIT TORQUE GEAR DRIVE

The success of a split-torque gear train design depends on the

equal division of the torque to the two output shafts. Conceptually,
the floating pinion design makes the system of the pinion shaft a

two-force member. The transmitted forces on the two diametrically
opposite meshing points on the pinion have to balance each other to

achieve equal torque splitting.

facing face gear and an upward-facing face gear. The face-gear

shafts terminate in spur pinions, which drive a large combining gear.

The hub of the combining gear is attached to the sun gear of a high-

contact-ratio planetary gear set where the carrier is the output
member and is attached to the rotor shaft. A small pinion is driven

at the aft side of the main combining gear. This pinion drives

another face gear mounted on the NOTAR TM (no tailrotor) drive-
shaft, which leads aft directly to a NOTAR TM fan.

The concept of torque split appears to be a significant devel-

opment wherein an input spur-gear pinion drives two face gears

arranged to provide an accurate division of power. This division

greatly reduces the size and weight of the corner-turning hardware

as well as the size and weight of the next reduction stage. The

Figure 3.--Finite element model of the split-torque drive.

model has been used to analyze the torque splitting percentage for

different support conditions as shown in Table I. The stiffnesses of

the front and rear support of the pinion shaft were varied to deter-

mine their effect on torque split (cases 1 to 4, Table I). The con-
tacts between the pinion and the two face gears were modeled using

gap elements. The torque split was determined using gap element

reaction forces as calculated using finite element analysis. Among

the first four cases studied, the most even torque split was provi-

ded in case 4 when the stiffness of the shaft's front support was
1.1xl0 7 N/m (6.0xl0 4 lb/in.). This is an order of magnitude less

than a typical hearing support and is realistic.

__/: The analytical effort to validate the split torque concept wasSun gear conducted with the use of a finite element method. To analyze the
S_':: "........ :: _: deflection and the percentage of torque splitting in real condition,

I'_-" ; _--%_:'_ - :_" "_' the elasticity of the gear structure and the shaft has to be consid-
ers'} ered first. The finite element model provides an accurate approach

oo  inio gear _ __l_lllJll_ to include the stiffness and the deflection of the gear structure. The

"_ _ _ overall model of the split-torque gear train is shown in Fig. 3. The

\ / Face.gear ',J-'sj

Face-gear-" _-_ t_ Driving spur pinion

Figure 2.--3-stage split-torque single planetary transmission.

engines rated at 1864 kW (2500 hp) each which combine to drive

the rotor shaft with 3"/28 kW (5000 hp). The transmission is

designed to carry 2237 kW (3000 hp) per side for a one engine

inoperative condition. Power flows from the engine through an

overrunning positive-engagement clutch to a spur pinion, which is
radially lightly restrained. The spur pinion drives a downward-



TABLE I. -- ADVANCED ROTORCRAFT TRANSMISSION TORQUE SPLITTING PERCENTAGES

Case

number

Support of pinion shaft

Front-end "- Rear-end

spring rate, spring rate,

N/M (lb/ln.) NIM (Ib/in.)

0

(Free float) (Reet=ined)

I.I×I0 e (6.0× lOS) = 1.1×10 a : (6.0×lOS) a

1.1)<107 (6.0×10 s)

1.1xlO 7 (6.0x104)

Gear meshing clearance, mm (in.)

Due to Adjustment

backlash

Split torque, °/0

Face- Face-up Face- Face-up

down gear down gear

gear gear

0.0 (0.0) 0.0 (0.0) 51.58 48.42

56.87 43.13

53.11 46.89

51.41 48.59

0.0127 51.55 48.45

(o.ooos)

0.127 (0.005) 52.86 47.14

81.66 18.34

0.076 (0.003) 0.0 (0.0) 50.54 49.46

0.1_7 (o.oos) _, 40.97 so.03

LI.I×10e N/M (6.0×10 s lb/in.) is the translational spring rate for typical bearing and housing support in helicopter transmission.

The use of backlash controlto compensate forthe differencein

the tangentialstiffnessbetween the two output shaftswas investi-

gated. In reality,the exact compliance between the teethof the
thr/_egearsisnot practical.The deviationfrom the common en-

gagement iscaused not onlyby the differentstiffnessof the two

paths but alsoby the indexingproblem associatedwith the closed-

loopgear traindesign. Additionalanalyseshave been performedto
incorporatethe initialclearanceon any one sideof the pinionto

simulateunequal backlash conditions.This was done by settingan
initialclearancein the appropriategap element. The influenceof

unequal backlash on load sharinginthe split-torquedrivesystem is

alsogivenin Table I. The effectof clearanceon torquesplitwas

smallbut should be consideredwhen fine-tuninga designforopti-

mal loadsharing. The analysisresultsare the baselineforusing

backlashcontrolin assemblingan equaltorque-splittingdrivein
practice.

A structuraldynamic analysiswas carriedout to determine a

resonancefreesystem by stiffeningthe fullycompliant support at

the frontend of the pinionshaft.The selectionof the pinionsup-
port with the designedspringrateto remain nearlyequaltorque

splittingand to meet the structuraldynamics criteriaisthe key to

the designof the splittorquemechanism. A few deviceswhich may
providethe compliance to obtain even torque splittingwere studied.

The torquesplitmechanism must be as compliant as possibleyet

stiffenough to ensure the frequencyof the firstvibrationalmode is

higherthan the rotatingspeed of the pinionshaftto avoidreso-

nance. The currenteffortindesignconcentrateson a squirrelcage

springsupport and a resilientbearingmount. The designshould

precludeany slipof the bearingouter ring. Also,the working range

of the springshould be largeenough forthe movement of the pinion
shaftto finditsnew centerpositionof balance.

INFLUENCE OF GEAR ECCENTRICITY

The influence of gear eccentricity is important for determina-

tion of conditions of the split of torques when one pinion is in mesh

with two face gears, and the pinion and the gears have eccentricity.
Due to transmission errors the driven face gears will perform rota-
tion with slightly different angular velocities, and this means that
the split of torques will be accompanied with deflections of tooth
surfaces.

Transmission error is defined as,

' NI(_-_) (1)

where N 1 and N 2 are the number of teethof the pinionand the

gear,respectively;_ and _b2 are the anglesof rotationof the
pinionand the gear,respectively;ql isthe valueof _I that

correspondsto _b_= 0.
The results_)finvestigationshow that the transmissionerror

curve due to eccentricityof the pinionor the gear only isan approx-

imate harmonic curve. The periodsof thesecurvesare the time

periodsfor one revolutionof the pinionand the gear,respectively.

The transmissionerrorsfor the casewith eccentricityof both the

pinionand the gearisa periodicfunctionas shown in Fig.4. The

periodof thiscurve isdetermined by the lowest common multipleof

the numbers ofteethof the pinionand the gear.

The greatadvantage offace-geardrivewith an involutepinion

isthat the pinionteethare equidistantand have a common normal.

This means at the end of the meshing ofa pairof teethand the be-

ginningof meshing a next pairof neighboringteethboth tooth pairs

willhave a common normal. Therefore,the change of tooth mesh-

ing at the transferpoint willnot cause a jump of angular velocity.
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Figure 4.--Typicai transmission errors for a face gear mesh.



This statement is correct as well for eccentric conventional involute '

gears. This implies that noise and vibration are relatively insensi-

tive to gear misallgnment.

BASIC TOPICS OF GEAR DESIGN AND MANUFACTURING

Generation of Face-Gear Drives with Localized Bearing Contact

The generation of the face gear by a shaper is shown in Fig. 5,

The shaper and the gear rotate about intersecting axes with angular
velocities w (s) and w (2) that are related as follows r

w(s) N 2
- (2)

w(2) N s

The designations of s and 2 indicate the shaper and the face gear,

respectively.

2 (face-gear}
!

!

/-- Shaper

/

O (_ zf
o(2) _/ Zs =_

3'm

/
z2 I rf

Figure 5.--Face-gear generation.

If the face gear is generated by a shaper that is identical to the

pinion, the process of generation simulates the meshing of the pinion

with the face gear being in llne contact at every instant. In reality,

such type of contact cannot be implemented due to its sensitivity to

misalignment. The errors (tolerances) of assembly and manufactur-

ing can cause separation of the contacting surfaces and results in the

undesirable contact at the edge. To avoid this, it necessary to use a

shaper with a larger number of teeth. The difference is denoted as

AN -- N s - N l (N 1 is the number of the pinion teeth; AN ranges

from 1 to 3).

The geometric aspects of localization of bearing contact are

illustrated with drawings of Fig. 6. We may imagine that three

surfaces - Es, El, and E 2 - are in mesh with each other simul-

taneously. Surfaces E s and E 2 are in line contact at every in-

stant in the process for generation. Surfaces E s and E1 are also
in line contact being in an imaginary internal engagement as shown

in Fig. 6. The imaginary meshing of the shaper and the pinion may

be considered as a meshing with the following features: (1) the

center distance B depends on the difference AN 0f the number of

teeth of the shaper and the pinion; (2) there is an instantaneous

axis of rotation that intersects the extended center distance O801

at point P and is parallel to the axes of the pinion and the shaperi

(3) the instantaneous line of contact of _s and E l is a straight

line Lsl that is parallel to the axes of the Shaper and the pinion;

M is the point of intersection of Lsl with the plane of drawings;

(4) surface E s and _2 are also in line contact (at Ls2 ) at every

instant; and (5) surfaces E 2 and E 1 are in polnt contact and the

instantaneous point of contact is the intersection of Lsl and Ls2.
The location of point P can be determined as the intersection

of the common tangent to the base circles of the shaper and the

pinion with the extended center distance OsO 1 (Fig. 6). PM is the

"common normal to the involute shapes of the shaper and the pinion.

/--Axis of symmetry
/

/

Shaper --x

\ 13
Pinion "

xf

01

/ B

Xs \

Yf Ys

Figure 6.--Imaginary tangency of shaper and pinion surfaces.

The contact of the pinion and the face-gear surfaces under the

load is a contact over an elliptical area; the center of such an ellipse

is the theoretical contact point of E2 and ZI"

The input design data for an example of a face-gear drive are

given in Table II. These data are used for computations demon-

strated in the following sections.

TABLE II. -- INPUT FACE-GEAt_,

DRIVE DESIGN DATA

Shaft angle) deg .............. 80

Pinion number of teeth ......... 28

Gear number of teeth .......... 107

Diametral pitch ................ 8

Pressure angle, deg ............. 25

Meshing of the Shaper and the Face Gear

The shaper tooth surface )2,s and the face-gear tooth surface

E 2 contact each other at every instant at a spatial line Ls2.

Contact lines on E s and F, 2 are shown in Fig. 7. The contact

lines on E s and E 2 are derived from the following equations

(Litvin, 1989):



as

1. Contact lines on the shaper surface (Fig. 7 (a)) are defined

rs(Us,0s), N s • V_s2) = f(Us,0s,¢s) = 0 (3)

2. Contact lines on the face-gear surface (Fig. 7 (b)) are deter-
mined as

r2(us,0s,_.) = [M2.(¢.) ] r.(u_,08), f(u_,08,¢.) = 0 (4)

Here, (Us,Ss) are the Gaussian coordinates of the involute shaper

surface (see Appendix A in Litvin et al., 1992) and Cs is the
generalized parameter of motion.

Tooth surface _2 of the face gear is represented by Eqs. (4) in
three-parametric form with an implicit relation between parameters

(Us,gs,¢s). Fortunately, the equation of meshing

f(u.,0.,¢J = 0

is linear with respect to u s and this enables us to eliminate us
and represent Z2 in two-parametric form as

(5)

r2 = r2(0s,¢.) (6)

(a) Contact lines on shaper tooth surface.

Lsp --_

Z

Ill

///_ Contact
lines

(b) Contact lines on face-gear
surface.

Figure 7.--Face-gear contact lines.
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Tooth cross sections

Pressure angle = 25 °

L 1 = 160 mm, L2 = 193 mm
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Figure 8.--Cross-sections of face-gear tooth surface.

Figure 8 shows the cross-sections of the face gear to depict the

changing tooth profiles on r. 2 and the pointing at the outside
radius.

Limitations of Face-Gear Tooth Surface

The length of the tooth surface of a face gear is limited, due to
the possibility of undercutting by the shaper in the dedendum area

and the pointing of the teeth in the addendum area (Fig. 9).

The investigation of conditions of nonundercutting of the face
gear is based on the theorem that has been proposed by Litvin

(1989). There is a limitingline L on the generating surface

(shaper surface Es) that generates singular points on face-gear

surface _2" The limiting llne on _"s can be determined with the
equation

V (_) + V ("2) = 0 (7)
T

Here; V (8) is the velocity of contact point in its motion over _'s;
V (s2) isrthe sliding velocity of the shaper with respect to the face

gear. The reflection line of the conjugate meshing part and the fillet

on the face-gear tooth surface is designated by L as shown in
Fig. 7(b). More details are given in Appendix _, [P Litvin (1992).

The pointing of teeth (Fig. 7(b)) means that the tooth thick-

ness on the top of the tooth becomes equal to zero. The location of

the tooth pointing area may be determined by considering the

intersection of the two opposite tooth surfaces at the top land of a
tooth.

Computer programs for determination of limitations of the

length of the face gears have been developed at the University of

Illinois at Chicago. A quick review of results obtained are repre-

sented in the following charts.

Figure 9 shows the minimum and maximum radius factors for

the face gear with various gear ratio ms2 and the shaper tooth
numbers. In this example, the shaft angle is 80 ° and the pressure

angle is 20 °. The program is sufficiently general that it has the

ability to generate design charts over a wide range. Knowing the
values of minimum and maximum radius factor we can obtain the

values of L 1 and L 2 (Fig. 10) by multiplying the radius factors

by N2/2P where N 2 is the tooth number of the face gear and P

is the diametral pitch. Using this method, L1 and L2 are in
units of inches. For design convenience, a unitless design parameter

u1 = 1P where 1 = L2 - L1 is usually considered. This parameter

is similar to the parameter that express the ratio l/m where

m = 25.4/P is the module of spur or helical gears. For power

transmissions it is desirable to keep u1 >_ 7. Our investigation
shows that this can be obtained with the gear ratio (number of face
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Figure 9.--Face-gear minimum and maximum radius
factors.

gear teeth divided by number of pinion teeth) > 3.8. Using the

data in Table II, we have obtained L1 = 160 mm (6.3 in.),
L2 = 193 mm (7.6 in.).

Computerized Simulation of Meshing and Contact of Pinion
and Face Gear

The bearing contact of pinion and face-gear tooth surfaces _1

and _2 is localized using the technique described in the previous

section. >3"1 and _2 are in point contact at every instant. The

computerized simulation of meshing and contact of _1 and _2
(Tooth Contact Analysis; TCA) can provide information on trans-

mission errors and the shift of bearing contact that is caused by
pinion-face-gear misalignment.

--L I

L2 ,,

Figure lO.--The determination of face-gear tooth length.

I

of zfII Yf

Figure 11 .--Contact of mating surfaces.

The idea of TCA is based on equations of tangency of contact-

ing surfaces (Fig. 11). Such equations express that the contacting

surfaces I_1 and I_2 have_ at any instant_ a common position
vector and collinear normals at their contact point M. For more

details see Litvin (1989) (and Appendix C in Litvin, 1992).

Our investigation shows that the gear misalignment (change of

the shaft angle, crossing of axes instead of intersection, axial dis-

placement of face gear) does not cause transmission errors. This is a

great advantage of face-gear drives in comparison with spiral bevel
gear drive.

However, gear misalignment does result in the shift of the

contact path on the gear surfaces. The patterns of the bearing

contact can be determined considering the motion of the instan-

taneous contact ellipse over the pinion-gear tooth surfaces in the

process of meshing. The dimensions and orientation of the instanta-

neous contact ellipse can be found if the prinicpal directions and
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curvatures of the contacting surfaces are determined at the current

point of surface contact (Litvin, 1992). The equations for computa-
tion of principal curvatures and directions are given in Appendix D
in Litvin (1992). The elastic approach of the surfaces is considered
as known.

It is possible to control the location of the bearing contact by
changing of the machine angle 7m that is formed by the axes of
the shaper and the face gear. However, the small magnitude of

A'_m can be only implemented with a very precise control of 7m.
Figure 12 shows an example of the face-gear bearing contact predic-
tion. The shift of bearing contact caused by gear mlsalignment and

change in machine angle is given in Litvin (1992).

Figure 1Z--Aligned face-gear drive: Localized bearing contact
with AN = 3.

Theoretical and Real Contact Ratio

The contact ratio m c is determined with the equation

)-
mc = 360 ° (8)

NI

Here (2) and (1) re r; qtl ¢1 p esent the angles of rotation of the pinion

that correspond to the beginning and the end of meshing foR.one
pv,i._of teeth; N, is the number of pinion teeth Angles ¢_" ) and

1 = " 1

¢!1$ can be determined from drawings of Fig. ()7b that show the

instantaneous contact lines referred to angles of pinion rotation.

Taking into account that for drawings of Fig. 7(b) the stepsize of ¢1
is 3 ° , the number of contact lines that cover the surface of face gear

is 10, and N l = 28 (see Table II), we obtain that the theoretical
value of m c is 2.33.

The localization of bearing contact is accompanied with the
reduction of contact ratio, since the number of potential contact

ellipses is reduced. Using an approach that is similar to the one
discussed above, we have determined that. ida(2) - j_(1)_ is 20.8 °,
and the real contact ratio is 1.62. -- _1 _1 J

Generation of Face Gears by Rack-Cutter
The installment of the rack-cutter and the gear is as shown in

Fig. 13. While the gear performs rotational motion about its axis,

the rack-cutter performs translational motion in zf axis.
The undercutting and pointing of the gear tooth surface limit

the length of the generated face gears. For those design data

listed in Table II, the tooth length P of the generated face gear is

0.3 in., which is too small for practical application (because
ul=Pl=2.4< 7).

_O _C

ZC e xc

Zf_ /

Z/// \"-- Zc

Figure 13.--Installment of the rack-cutter.

EXPERIMENTAL TESTS

Experimental tests on face gears were performed in the NASA
Lewis spiral bevel gear rig (Handschuh et al., 1992). The face gears

tested (Fig. 14) were basically a half-size version of the MDHC/
Lucas ART design. The gears were 16 pitch with 28 teeth on the

pinion and 107 on the face gear. The shaft angle was 90 ° to

accommodate the rig. The gears were made of Maraging 300 steel
per AMS 6514. The pinions were nitrided and ground with a case
hardness of Rc 58. The face gears were shaper cut and hardened

to R c 52. For the tests, 100-percent design speed and torque were

defined as 19 000 rpm pinion speed and 68 N/m (600 in./lb) pinion

torque for a power of 135 kW (180 hp).

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::: _ :::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::: : ";'i:ii.i.:.:.:.;.:....:;:A +i.:.:...)......:.:

. ,.., ......,.,.,.,.,., ,..........`.`.`.`...`.`........``.`.`..``.`..``.````.`.`.`````.`.`.`.```````..``.`.`.```.`.`. .`.`.`.````.`..`.`.`````.``````````.``..``.`.`.````````````.````````.`.`.`..``````.`. .,.,,,.,.,.,...,, .,....,..,...,

Figure 14._Test gears.

The NASA Lewis spiral bevel gear rig (Fig. 15) operates on a

closed loop or torque-regenerative principle. Two sets of pinion/

face gears are used in the loop with the two pinions connected by

a cross shaft. The outputs of the two face gears are connected

through a helical gear mesh. A hydraulic loading system is con-

nected to the helical mesh which puts a thrust load on the mesh,

and thus, the torque in the loop. A variable speed motor is
connected by a belt to the loop and powers the test stand.

A limited amount of test gears were available for test (four

pinions and four face gears). The objective of the tests were to
demonstrate the feasibility of face gears and determine the failure

modes for high power applications. Four sets of gears success-

fully completed 26-hr (30x106 pinion cycles) endurance runs at

100-percent speed and torque. The gears were run at 74 °C

(165 °F) oil inlet temperature using an ample supply of DOD-

L-85734 lubricant at about 0.8 gpm per mesh. The contact pattern
on the teeth was good and developed on the full tooth of the face

gear. The pinion teeth showed normal wear. The face-gear teeth,
however, had some surface distress. The teeth from the test side
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Figure 15.--NASA spiral bevel gear rig.

(pinion driving the face gear) had moderate wear and were in good

condition. The teeth from the slave side (face gear driving the

pinion) had small pit lines in some instances in the middle region of
the teeth.

The gears were subsequently run 26 hr at 200-percent torque

and 100-percent speed. One test (two sets of gears) lasted the 26 hr

with the pinions showing moderate wear and the face gears showing

increasing surface distress. The second test (the additional two sets

of gears) was suspended after about 10.5 hr due to a tooth breakage

on one of the face gears (slave side). The breakage originated from

the surface pit line from the previous test.

The results, although limited_ demonstrated the feasibility of

face gears in high-speed, high-load applications. The tests did show

surface distress with the face gears, however. The use of a hard_

ened, ground gear steel (in use for conventional aircraft gears today

but not presently available for face gears since manufacturing tech-

niques do not exist to grind face gear) would significantly increase

the surface durability and make face gears available for high-power

application.

CONCLUSIONS

The use of face gears in helicopter transmissions was explored.

A light-weight, split torque transmission design utilizing face gears

was described. Face-gear design and geometry were investigated.

Topics included tooth generation, minimum inner and maximum

outer radii, tooth contact analysls_ contact ratio, gear eccentricity,

and structural stiffness. Face-gear experimental studies were also

included. The following results were obtained:

1. The feasibility of face gears in high-speed, high-load applica-

tions such as helicopter transmissions was demonstrated through

experimental testing. Face gears which were basically a half-scale

version of the MDHC/Lucas ART design were tested in the NASA

Lewis spiral bevel rig. The pinions and the gears showed good

contact patterns and ran at 100- and 200-percent design torque.

However, the face gears did have some surface distress.

2. Analytical transmission error studies showed face-gears were

relatively insensitive to gear misalignment. Tooth contact, however,

was affected by misalignment resulting in a shift of the contact on

the tooth surfaces. A method of localizing contact by changing tool

settings of the generating machine was explored.

3. The length of the face-gear tooth width was limited due to

possible undercutting by the shaper in the dedendum area and

pointing of tile teeth in the addendum area. Design charts were

developed to determine minimum inner and maximum outer radii.

4. A finite element analysis of the pinion and face-gear struc-

ture in a split torque design provided data on load sharing. Among

the eases studied, an even torque split was provided when the stiff-

ness of the pinion shaft front support (close to the face-gear mesh)

was about an order of magnitude less than a typical bearing

support.
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