693 research outputs found

    Mechanisms of recruitment for the retrieval of food in Amitermes evuncifer Silvestri (Isoptera: Termitidae: Termitinae)

    Get PDF
    The study revealed that there was quantitative recruitment in colonies of Amitermes evuncifer, whenever food was discovered by the scouting foragers. Discovered food stimulated the termites to accelerate their running speed, to and from the food source. Increased trail-laying activity, accelerated movement and carrying of food by the returning workers facilitated recruitment of other confederates from their nest. These activities equally directed the recruited termites to the food source. Amitermes evuncifer was observed to regulate traffic in relation to newly discovered food source. The results showed that there was rapid communication between the termites of food source within 3-4 min. It was further observed that the trail to newly found food source did not become dominant over the trail to the already existing food source. The results showed clearly the effect of food on vital activities of termite

    Petrological Constraints on the Recycling of Mafic Crystal Mushes and Intrusion of Braided Sills in the Torres del Paine Mafic Complex (Patagonia)

    Get PDF
    Cumulate and crystal mush disruption and reactivation are difficult to recognize in coarse-grained, shallow plutonic rocks. Mafic minerals included in hornblende and zoned plagioclase provide snapshots of early crystallization and cumulate formation, but are difficult to interpret in terms of the dynamics of magma ascent and possible links between silicic and mafic rock emplacement. This study presents the field relations, the microtextures and the mineral chemistry of the Miocene mafic sill complex of the Torres del Paine intrusive complex (Patagonia, Chile) and its subvertical feeder zone. We summarize a number of observations that occur in structurally different, shallow, plutonic rocks, as follows. (1) The mafic sill complex was built up by a succession of braided sills of shoshonitic and high-K calc-alkaline porphyritic hornblende-gabbro and fine-grained monzodiorite sills. Local diapiric structures and felsic magma accumulation between sills indicate limited separation of intercumulus liquid from the mafic sills. Anhedral hornblende cores, with olivine + clinopyroxene ± plagioclase ± apatite inclusions, crystallized at temperatures >900°C and pressures of ∼300 to ∼400 MPa. The corresponding rims and monzodiorite matrix crystallized at 950°C) than estimated from the composition of the granite minimum. We show that hornblende-plagioclase thermobarometry is a useful monitor for the determination of the segregation conditions of granitic magmas from gabbroic crystal mushes, and for monitoring the evolution of shallow crustal magmatic crystallization, decompression and coolin

    Petrological Constraints on the Recycling of Mafic Crystal Mushes and Intrusion of Braided Sills in the Torres del Paine Mafic Complex (Patagonia)

    Get PDF
    Cumulate and crystal mush disruption and reactivation are difficult to recognize in coarse-grained, shallow plutonic rocks. Mafic minerals included in hornblende and zoned plagioclase provide snapshots of early crystallization and cumulate formation, but are difficult to interpret in terms of the dynamics of magma ascent and possible links between silicic and mafic rock emplacement. This study presents the field relations, the microtextures and the mineral chemistry of the Miocene mafic sill complex of the Torres del Paine intrusive complex (Patagonia, Chile) and its subvertical feeder zone. We summarize a number of observations that occur in structurally different, shallow, plutonic rocks, as follows. (1) The mafic sill complex was built up by a succession of braided sills of shoshonitic and high-K calc-alkaline porphyritic hornblende-gabbro and fine-grained monzodiorite sills. Local diapiric structures and felsic magma accumulation between sills indicate limited separation of intercumulus liquid from the mafic sills. Anhedral hornblende cores, with olivine + clinopyroxene ± plagioclase ± apatite inclusions, crystallized at temperatures >900°C and pressures of ∼300 to ∼400 MPa. The corresponding rims and monzodiorite matrix crystallized at <830°C, ∼70 MPa. This abrupt compositional variation suggests stability and instability of hornblende during recycling of the mafic roots of the complex and subsequent decompression. (2) The near lack of intercumulus crystals in the subvertical feeder zone layered gabbronorite and pyroxene–hornblende gabbronorite stocks testifies that melt is more efficiently extracted than in sills, resulting in a cumulate signature in the feeding system. Granitic liquids were extracted at a higher temperature (T >950°C) than estimated from the composition of the granite minimum. We show that hornblende–plagioclase thermobarometry is a useful monitor for the determination of the segregation conditions of granitic magmas from gabbroic crystal mushes, and for monitoring the evolution of shallow crustal magmatic crystallization, decompression and cooling

    A Detailed Geochemical Study of a Shallow Arc-related Laccolith; the Torres del Paine Mafic Complex (Patagonia)

    Get PDF
    The shallow crustal Torres del Paine Intrusive Complex in southern Patagonia offers an opportunity to understand the chemical evolution and timing of crystallization processes in shallow plutonic rocks. It is characterized by hornblende-gabbros, gabbronorites, monzodiorites and granitic plutonic rocks. The exceptional exposure of the intrusion permits the identification of two structurally and petrographically different zones. Layered gabbronorite, olivine-bearing pyroxene-hornblende gabbronorite and monzodiorite forming vertical sheets and stocks in the west are referred to here as the feeder zone. These mafic rocks are in vertical contact with younger granitic rocks on their eastern border. The eastern part is a laccolith complex. It is characterized by three major units (I, II, III) of granitic rocks of over 1000 m vertical thickness; these are underlain in places by a sequence of hornblende-gabbro sills intermingled with evolved monzodiorite granite. Chilled, crenulated margins as well as flame structures between gabbroic rocks and monzodiorites suggest that the mafic sill complex remained partially molten during most of its construction. Bulk-rock major and trace element data indicate that the Paine mafic rocks follow a high-K calc-alkaline to shoshonitic differentiation trend. The parental magmas were basaltic trachyandesite liquids, with variable H2O and alkali contents. The majority of the feeder zone gabbronorites have high Al2O3 contents and positive Eu and Sr anomalies, consistent with accumulation of plagioclase and efficient extraction of intercumulus melt. The mafic sill complex largely lacks these cumulate signatures. Comparisons of the intercumulus groundmass in the hornblende-gabbros with intra-sill dioritic stocks and pods reveal similar rare earth element patterns and trace element ratios indicating incomplete extraction of evolved interstitial liquids. The Sr, Nd and Pb isotopic compositions of the mafic and granitic rocks exhibit ranges of 87Sr/86Sr of 0·704-0·708, εNd +3·8 to −1·2, 206Pb/204Pb 18·61-18·77, 207Pb/204Pb 15·67-15·67 and 208Pb/204Pb 38·56-38·77. Crystal fractionation and assimilation-fractional crystallization modelling, combined with high-precision U-Pb dating of zircons, indicates that the western feeder zone gabbronorites are linked to the uppermost Paine granite (granite I), whereas the mafic sill complex is younger and not directly related to the voluminous granite units II and III. These results are interpreted to indicate that crystal-liquid separation is facilitated in subvertical, dynamic feeder systems whereas subhorizontal sill complexes are inefficient in separating large volumes of mafic cumulates and complementary felsic rock

    Second-order nonlinear silicon-organic hybrid waveguides

    Get PDF

    Error prevention in online forms: Use color instead of asterisks to mark required-fields

    Get PDF
    In this study, a simple but important user interface design choice is examined: when marking required-fields in online forms, should GUI designers stick with the often used asterisk that many form design guidelines cite as the de-facto web standard, or should they choose a colored background as a new design solution to visually signal which input fields are required? An experiment with 24 participants was conducted to test the hypotheses that efficiency, effectiveness and satisfaction ratings of colored required-fields exceed those of asterisk-marked required-fields. Results indicate that colored required field marking leads to fewer errors, faster form fill-in in and higher user satisfactio

    Optical interconnect solution with plasmonic modulator and Ge photodetector array

    Get PDF
    We report on an optical chip-to-chip interconnect solution, thereby demonstrating plasmonics as a solution for ultra-dense, high-speed short-reach communications. The interconnect comprises a densely integrated plasmonic Mach-Zehnder modulator array that is packaged with standard driving electronics. On the receiver side, a germanium photodetector array is integrated with trans-impedance amplifiers. A multicore fiber provides a compact optical interface to the array. We demonstrate 4 × 20 Gb/s on-off keying signaling with direct detection.ISSN:1041-1135ISSN:1941-017

    40 Gbit/s silicon-organic hybrid (SOH) phase modulator

    Get PDF
    A 40 Gbit/s electro-optic modulator is demonstrated. The modulator is based on a slotted silicon waveguide filled with an organic material. The silicon organic hybrid (SOH) approach allows combining highly nonlinear electro-optic organic materials with CMOS-compatible silicon photonics technology
    corecore