97 research outputs found

    Exploring Species Limits in Two Closely Related Chinese Oaks

    Get PDF
    Background. The species status of two closely related Chinese oaks, Quercus liaotungensis and Q. mongolica, has been called into question. The objective of this study was to investigate the species status and to estimate the degree of introgression between the two taxa using different approaches. [br/] Methodology/Principal Findings. Using SSR (simple sequence repeat) and AFLP (amplified fragment length polymorphism) markers, we found that interspecific genetic differentiation is significant and higher than the differentiation among populations within taxa. Bayesian clusters, principal coordinate analysis and population genetic distance trees all classified the oaks into two main groups consistent with the morphological differentiation of the two taxa rather than with geographic locations using both types of markers. Nevertheless, a few individuals in Northeast China and many individuals in North China have hybrid ancestry according to Bayesian assignment. One SSR locus and five AFLPs are significant outliers against neutral expectations in the interspecific FST simulation analysis, suggesting a role for divergent selection in differentiating species.[br/] Main Conclusions/Significance. All results based on SSRs and AFLPs reached the same conclusion: Q. liaotungensis and Q. mongolica maintain distinct gene pools in most areas of sympatry. They should therefore be considered as discrete taxonomic units. Yet, the degree of introgression varies between the two species in different contact zones, which might be caused by different population history or by local environmental factors

    Microsatellite markers: what they mean and why they are so useful

    Full text link

    Comparative phylogeography in the Atlantic forest and Brazilian savannas: pleistocene fluctuations and dispersal shape spatial patterns in two bumblebees

    Get PDF
    Background: Bombus morio and B. pauloensis are sympatric widespread bumblebee species that occupy two major Brazilian biomes, the Atlantic forest and the savannas of the Cerrado. Differences in dispersion capacity, which is greater in B. morio, likely influence their phylogeographic patterns. This study asks which processes best explain the patterns of genetic variation observed in B. morio and B. pauloensis, shedding light on the phenomena that shaped the range of local populations and the spatial distribution of intra-specific lineages. Results: Results suggest that Pleistocene climatic oscillations directly influenced the population structure of both species. Correlative species distribution models predict that the warmer conditions of the Last Interglacial contributed to population contraction, while demographic expansion happened during the Last Glacial Maximum. These results are consistent with physiological data suggesting that bumblebees are well adapted to colder conditions. Intra-specific mitochondrial genealogies are not congruent between the two species, which may be explained by their documented differences in dispersal ability. Conclusions: While populations of the high-dispersal B. morio are morphologically and genetically homogeneous across the species range, B. pauloensis encompasses multiple (three) mitochondrial lineages, and show clear genetic, geographic, and morphological differences. Because the lineages of B. pauloensis are currently exposed to distinct climatic conditions (and elevations), parapatric diversification may occur within this taxon. The eastern portion of the state of SĂŁo Paulo, the most urbanized area in Brazil, represents the center of genetic diversity for B. pauloensis
    • …
    corecore