613 research outputs found
Retinal degeneration is rescued in transgenic rd mice by expression of the cGMP phosphodiesterase ß subunit
The ß subunit of the cGMP phosphodiesterase (PDE) gene has been identified as the candidate gene for retinal degeneration in the rd mouse. To study the molecular mechanisms underlying degeneration and the potential for gene repair, we have expressed a functional bovine cGMP PDE ß subunit in transgenic rd mice. One transgenic mouse line showed complete photoreceptor rescue across the entire span of the retina. A second independently derived line showed partial rescue in which photoreceptors in the superior but not the inferior hemisphere of the retina were rescued. In the latter animals, intermediate stages of degeneration were observed in the transition zone between rescued and diseased photoreceptors. Pathologic changes in the retina ranged from vesiculation of the basalmost outer segment discs in otherwise structurally intact rod cells to photoreceptors with highly disorganized outer segments and intact inner segments. Totally or partially rescued retinas showed a corresponding restoration of cGMP PDE activity, whereas nonrescued retinas had minimal enzyme activity, characteristic of the rd phenotype. These transgenic animals provide models for studying the molecular basis of retinal degenerative disease and conclusively demonstrate that the phenotype of rd mice is produced by a defect in the ß subunit of cGMP PDE
Results of Skylab medical experiment M171: Metabolic activity
The experiment was conducted to establish whether man's ability to perform mechanical work would be progressively altered as a result of exposure to the weightless environment of space flight. The Skylab crewmen exercised on a bicycle ergometer at workloads approximating 25, 50, and 75 percent of their maximum aerobic capacity. The physiological parameters monitored were respiratory gas exchange, blood pressure, and vectorcardiogram/heart rate. The results of these tests indicate that the crewmen had no significant decrement in their responses to exercise during their exposure to zero gravity. The results of the third manned Skylab mission (Skylab 4) are presented and a comparison is made of the overall results obtained from the three successively longer Skylab manned missions. The Skylab 4 crewmembers' 84-day in-flight responses to exercise were no worse and were probably better than the responses of the crewmen on the first two Skylab missions. Indications that exercise was an important contributing factor in maintaining this response are discussed
Developing effective chronic disease interventions in Africa: insights from Ghana and Cameroon.
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: Africa faces an urgent but 'neglected epidemic' of chronic disease. In some countries stroke, hypertension, diabetes and cancers cause a greater number of adult medical admissions and deaths compared to communicable diseases such as HIV/AIDS or tuberculosis. Experts propose a three-pronged solution consisting of epidemiological surveillance, primary prevention and secondary prevention. In addition, interventions must be implemented through 'multifaceted multi-institutional' strategies that make efficient use of limited economic and human resources. Epidemiological surveillance has been prioritised over primary and secondary prevention. We discuss the challenge of developing effective primary and secondary prevention to tackle Africa's chronic disease epidemic through in-depth case studies of Ghanaian and Cameroonian responses. METHODS: A review of chronic disease research, interventions and policy in Ghana and Cameroon instructed by an applied psychology conceptual framework. Data included published research and grey literature, health policy initiatives and reports, and available information on lay community responses to chronic diseases. RESULTS: There are fundamental differences between Ghana and Cameroon in terms of 'multi-institutional and multi-faceted responses' to chronic diseases. Ghana does not have a chronic disease policy but has a national health insurance policy that covers drug treatment of some chronic diseases, a culture of patient advocacy for a broad range of chronic conditions and mass media involvement in chronic disease education. Cameroon has a policy on diabetes and hypertension, has established diabetes clinics across the country and provided training to health workers to improve treatment and education, but lacks community and media engagement. In both countries churches provide public education on major chronic diseases. Neither country has conducted systematic evaluation of the impact of interventions on health outcomes and cost-effectiveness. CONCLUSIONS: Both Ghana and Cameroon require a comprehensive and integrative approach to chronic disease intervention that combines structural, community and individual strategies. We outline research and practice gaps and best practice models within and outside Africa that can instruct the development of future interventions
Field Monitoring of the Compressibility of Municipal Solid Waste and Soft Alluvium
The paper presents the results of a settlement-monitoring program for a preloaded roadway embankment over a closed landfill underlain by three compressible units: municipal solid waste, alluvial peat, and organic silt. To monitor the progression of embankment settlement and assess the effectiveness of the preload treatment, a field instrumentation system was installed within the embankment footprint. The field instrumentation system, consisting of settlement plates, and vertical extensometer and vibrating wire piezometer stations, was monitored prior to construction, during construction, and for approximately 18 months thereafter. The extensometer and piezometer stations provided information on the individual response characteristics of the compressible units to load application. The paper discusses the field settlement and piezometric data, and provides time-settlement relationships for the compressible units. Backcalculated compressibility parameters for landfill refuse are compared with those reported by other researchers for such materials. Application of hyperbolic methods for consolidation analysis is evaluated with respect to reliability as a tool for settlement predictions for similar preload procedures
Management of Diabetic Eye Disease Using Carotenoids and Nutrients
Diabetic retinopathy is the leading cause of blindness and visual disability globally among working-age adults. Until recently, diabetic eye disease is primarily regarded by its microvasculature complications largely characterized by progressive retinopathy and macular edema. However, a growing body of evidence suggests that hyperglycemia-induced oxidative stress and inflammation play an integral role in the early pathogenesis of diabetic retinopathy by potentiating retinal neurodegeneration. The onset of type 2 diabetes mellitus starts with insulin resistance leading to insulin deficiency, hyperglycemia, and dyslipidemia. Which in turn enhances the pro-oxidant and pro-inflammatory pathways. Additionally, various poor dietary behaviors along with obesity worsen physiological state in diabetics. However, decreased levels and depletion of the endogenous antioxidant defense system in the retina can be sufficiently augmented via carotenoid vitamin therapy. Therefore, dietary supplementation of antioxidant micronutrients particularly macular carotenoids lutein, zeaxanthin and meso-zeaxanthin that promote retinal health and optimal visual performance, may serve as an adjunctive therapy in the management of diabetic eye disease
Recommended from our members
Rhodopsin Expression Level Affects Rod Outer Segment Morphology and Photoresponse Kinetics
Background: The retinal rod outer segment is a sensory cilium that is specialized for the conversion of light into an electrical signal. Within the cilium, up to several thousand membranous disks contain as many as a billion copies of rhodopsin for efficient photon capture. Disks are continually turned over, requiring the daily synthesis of a prodigious amount of rhodopsin. To promote axial diffusion in the aqueous cytoplasm, the disks have one or more incisures. Across vertebrates, the range of disk diameters spans an order of magnitude, and the number and length of the incisures vary considerably, but the mechanisms controlling disk architecture are not well understood. The finding that transgenic mice overexpressing rhodopsin have enlarged disks lacking an incisure prompted us to test whether lowered rhodopsin levels constrain disk assembly. Methodology/Principal Findings: The structure and function of rods from hemizygous rhodopsin knockout (R+/−) mice with decreased rhodopsin expression were analyzed by transmission electron microscopy and single cell recording. R+/− rods were structurally altered in three ways: disk shape changed from circular to elliptical, disk surface area decreased, and the single incisure lengthened to divide the disk into two sections. Photocurrent responses to flashes recovered more rapidly than normal. A spatially resolved model of phototransduction indicated that changes in the packing densities of rhodopsin and other transduction proteins were responsible. The decrease in aqueous outer segment volume and the lengthened incisure had only minor effects on photon response amplitude and kinetics. Conclusions/Significance: Rhodopsin availability limits disk assembly and outer segment girth in normal rods. The incisure may buffer the supply of structural proteins needed to form larger disks. Decreased rhodopsin level accelerated photoresponse kinetics by increasing the rates of molecular collisions on the membrane. Faster responses, together with fewer rhodopsins, combine to lower overall sensitivity of R+/− rods to light
Efficacy and tolerability of an endogenous metabolic modulator (AXA1125) in fatigue-predominant long COVID: a single-centre, double-blind, randomised controlled phase 2a pilot study
Background: ‘Long COVID’ describes persistent symptoms, commonly fatigue, lasting beyond 12 weeks following SARS-CoV-2 infection. Potential causes include reduced mitochondrial function and cellular bioenergetics. AXA1125 has previously increased β-oxidation and improved bioenergetics in preclinical models along with certain clinical conditions, and therefore may reduce fatigue associated with Long COVID. We aimed to assess the efficacy, safety and tolerability of AXA1125 in Long COVID. / Methods: Patients with fatigue dominant Long COVID were recruited in this single-centre, double-blind, randomised controlled phase 2a pilot study completed in the UK. Patients were randomly assigned (1:1) using an Interactive Response Technology to receive either AXA1125 or matching placebo in a clinical based setting. Each dose (33.9 g) of AXA1125 or placebo was administered orally in a liquid suspension twice daily for four weeks with a two week follow-up period. The primary endpoint was the mean change from baseline to day 28 in the phosphocreatine (PCr) recovery rate following moderate exercise, assessed by 31P-magnetic resonance spectroscopy (MRS). All patients were included in the intention to treat analysis. This trial was registered at ClinicalTrials.gov, NCT05152849. / Findings: Between December 15th 2021, and May 23th 2022, 60 participants were screened and 41 participants were randomised and included in the final analysis. Changes in skeletal muscle phosphocreatine recovery time constant (τPCr) and 6-min walk test (6MWT) did not significantly differ between treatment (n = 21) and placebo group (n = 20). However, treatment with AXA1125 was associated with significantly reduced day 28 Chalder Fatigue Questionnaire [CFQ-11] fatigue score when compared with placebo (least squares mean difference [LSMD] −4.30, 95% confidence interval (95% CI) −7.14, −1.47; P = 0.0039). Eleven (52.4%, AXA1125) and four (20.0%, placebo) patients reported treatment-emergent adverse events; none were serious, or led to treatment discontinuation. / Interpretation: Although treatment with AXA1125 did not improve the primary endpoint (τPCr-measure of mitochondrial respiration), when compared to placebo, there was a significant improvement in fatigue-based symptoms among patients living with Long COVID following a four week treatment period. Further multicentre studies are needed to validate our findings in a larger cohort of patients with fatigue-dominant Long COVID. / Funding: Axcella Therapeutics
A protocol for manual segmentation of medial temporal lobe subregions in 7 Tesla MRI
Recent advances in MRI and increasing knowledge on the characterization and anatomical variability of medial temporal lobe (MTL) anatomy have paved the way for more specific subdivisions of the MTL in humans. In addition, recent studies suggest that early changes in many neurodegenerative and neuropsychiatric diseases are better detected in smaller subregions of the MTL rather than with whole structure analyses. Here, we developed a new protocol using 7 Tesla (T) MRI incorporating novel anatomical findings for the manual segmentation of entorhinal cortex (ErC), perirhinal cortex (PrC; divided into area 35 and 36), parahippocampal cortex (PhC), and hippocampus; which includes the subfields subiculum (Sub), CA1, CA2, as well as CA3 and dentate gyrus (DG) which are separated by the endfolial pathway covering most of the long axis of the hippocampus. We provide detailed instructions alongside slice-by-slice segmentations to ease learning for the untrained but also more experienced raters. Twenty-two subjects were scanned (19–32 yrs, mean age = 26 years, 12 females) with a turbo spin echo (TSE) T2-weighted MRI sequence with high-resolution oblique coronal slices oriented orthogonal to the long axis of the hippocampus (in-plane resolution 0.44 × 0.44 mm2) and 1.0 mm slice thickness. The scans were manually delineated by two experienced raters, to assess intra- and inter-rater reliability. The Dice Similarity Index (DSI) was above 0.78 for all regions and the Intraclass Correlation Coefficients (ICC) were between 0.76 to 0.99 both for intra- and inter-rater reliability. In conclusion, this study presents a fine-grained and comprehensive segmentation protocol for MTL structures at 7 T MRI that closely follows recent knowledge from anatomical studies. More specific subdivisions (e.g. area 35 and 36 in PrC, and the separation of DG and CA3) may pave the way for more precise delineations thereby enabling the detection of early volumetric changes in dementia and neuropsychiatric diseases
- …